
Injection Time Planning: Making CQF Practical in
Time-Sensitive Networking

Jinli Yan, Wei Quan*, Xuyan Jiang and Zhigang Sun
College of Computer, National University of Defense Technology
Email: {yanjinli10, w.quan, jiangxuyan, sunzhigang}@nudt.edu.cn

Abstract—Time-Aware Shaper (TAS) is a core mechanism
to guarantee the deterministic transmission for periodic time-
sensitive flows in Time-Sensitive Networking (TSN). The generic
TAS requires complex configurations for the Gate Control List
(GCL) attached to each queue in a switch. To simplify the design
of TSN switch, a Ping-Pong queue-based model named Cyclic
Queuing and Forwarding (CQF) was proposed in IEEE 802.1
Qch by assigning fixed configurations to TAS. However, IEEE
802.1 Qch only defines the queue model and workflow of CQF.
A global planning mechanism which maps the time-sensitive flows
onto the underlying resources both temporally and spatially is
urgently needed to make CQF practical.

In this paper, we propose an Injection Time Planning (ITP)
mechanism to optimize the network throughput of time-sensitive
flows based on the observation that the start time when the
packets are injected into the network has an important influence
on the utilization of CQF queue resources. ITP provides a
global temporal and spatial resource abstraction to make the
implementation details transparent to algorithm designers. Based
on our ITP mechanism, a novel heuristic algorithm named Tabu-
ITP with domain-specific optimizing strategies is designed and
evaluated under three typical network topologies in industrial
control scenarios. Compared with the Naive algorithm without
using ITP mechanism, experimental results demonstrate that
Tabu-ITP improves the mapped flow number by 10x and the
resource utilization by 65%.

Index Terms—Time-Sensitive Networking, Resource Mapping,
CQF Model, Industrial Control.

I. INTRODUCTION

In many distributed hard real-time and safety-critical ap-
plication domains, such as automotive and industrial control
applications, the current proprietary bus-based networking
technologies are reaching their limits in supporting the increas-
ing communication bandwidth requirements [23] [30]. To cope
with these emerging requirements, the industry is starting to
adopt switched Ethernet as a promising solution. However, the
undeterministic queuing delay impedes the switched Ethernet
from providing deterministic forwarding service [16] [15].
The deterministic forwarding service has strict requirements
on latency, packet loss, and delay variation (jitter) during the
packet transmission, which is highly desirable for strict real-
time applications [18]. To empower standard Ethernet with
such capability, two well-known technologies named Time-
Sensitive Networking (TSN) [19] and Time-Triggered Ethernet
(TTE) [11] are proposed in recent years.

Different from TTE, where the deterministic forwarding
service is provided by separated switch buffers with a global

*Wei Quan is the corresponding author.

conflict-avoiding scheduling mechanism, TSN introduces new
traffic shapers like Time-Aware Shaper (TAS) to enable IEEE
802.1 to achieve the same goal [13]. The mechanism adopted
in TTE requires to redesign the standard Ethernet switch
and generate complex configurations on each switch in the
network. This fine-grained scheduling mechanism in TTE
faces scalability issues with the growth of demanded flows
and network sizes. On the contrary, TSN provides a coarse-
grained traffic shaping solution to the deterministic problem
with minor extensions to current standard switches. However,
the generic TAS still requires dynamic configurations for the
Gate Control List (GCL) attached to each queue in a switch.

To simplify the design of a TSN switch, IEEE 802.1 Qch
[5] standard recently proposed an easy-to-use model named
Cyclic Queuing and Forwarding (CQF) by installing static
configurations on the Gate Control Lists (GCL) of TAS.
CQF delivers predictable, deterministic latency by cyclically
switching the Ping-Pong queues. To the best of our knowledge,
by the time of this writing, IEEE 802.1 Qch only defines the
queue model and workflow of CQF, and there are only several
reviews introducing the related principles [18] [19] [28] [27].
However, how to map the targeting time-sensitive flows onto
the underlying hardware resources in CQF-based TSN to make
CQF practical is still an open question, which is the primary
goal of this paper.

After investigating recently proposed deterministic forward-
ing techniques, we find that the most obvious difference
between TTE and CQF-based TSN is how buffers/queues
are used for time-triggered/time-sensitive flows1. In TTE, the
buffers cannot be shared at the same time slice among time-
triggered flows. While in CQF-based TSN, multiple time-
sensitive flows can be aggregated into the same queue in CQF
without considering the input and output time sequences of
packets as long as the usage of queues on the path of these
flows does not exceed their capacity. Therefore, the complex
time scheduling for each time-aware buffer in TTE can be
ignored in CQF-based TSN, which significantly simplifies the
target problem. We also observe that the injecting time of
packets from an end system to the network has an essential
effect on the queue utilization of CQF-based TSN switches. If
all the packets are transmitted once they are produced, most
queue resources will be under-utilized.

1The time-triggered flows and the time-sensitive flows are the same. These
flows are scheduled based on per-buffer and per-queue in TTE and TSN
respectively.

F1 1Mb/s

F2 2Mb/s

Bd

F3 2Mb/s

Q1

Q2

Q3

Reserve Tbl. Queue Pool WFQ Table

Q1 0.2

Q2 0.4

Weight

Q3 0.4

Configurable Resource Non-Configurable Resource

(a) SRP in standard Ethernet

Buffer Pool

B1

B2

B3

Max

P1 1.8 2.2

P2 3.8 4.2

Min

P3 5.8 6.2

F1 4

F2 6

Slot

F3 10

Slot Timer

Rx Window Tbl. Tx TimeTbl.

(b) Switch model in TTE

Slot Timer

T1
Q1 1 0

Q2 0 1

T0T1
Q1 0 1

Q2 1 0

T0

Rx GCL Tx GCL

Q1

Q2

(c) CQF in TSN
Fig. 1. Comparison of three typical switch models in standard Ethernet, TTE, and TSN.

Based on these observations, we propose a CQF-oriented
planning mechanism named Injection-Time Planning (ITP)
for mapping the time-sensitive flows onto the underlying
resources both temporally and spatially, which is urgently
needed to make CQF practical. ITP provides a global temporal
and spatial resource abstraction to make the implementation
details transparent to mapping algorithm designers. Therefore,
algorithm designers can focus on the problem of maximizing
the schedulable time-sensitive flow number by delaying the
per-flow sending time on end systems. Based on the ITP
mechanism, a novel heuristic algorithm named Tabu-ITP is
also proposed to provide a general solver for the aforemen-
tioned mapping problem in all possible network topologies.
The application-related requirements could be easily satisfied
based on our solver without many modifications.

In Tabu-ITP algorithm, we introduce domain-specific
knowledge (DSK) to obtain a good trade-off between the
mapping quality and the searching overhead. The strategies
guided by DSK mainly consist of the flow density and multi-
level sorting policy. Flow density is introduced to measure the
uniformity of distribution for allocated queue resources, and
multi-level sorting policy is designed to determine the flow
sequence based on multi-dimensional flow features.

In order to evaluate our proposed solution, we set up three
typical topologies in the industrial control network, including
ring, linear, and snowflake. Our proposed algorithm Tabu-
ITP and other counterparts (Naive, Greedy-ITP, and SA-ITP)
are tested under various settings. The experimental results
show that Tabu-ITP improves the mapped flow number by
10x and the resource utilization by 65% when compared with
the Naive algorithm without ITP. The DSK strategies achieve
39% improvement than random search at most when tested in
Greedy-ITP algorithm. Although the mapped flow number of
Tabu-ITP and another heuristic algorithm SA-ITP (Simulated
Annealing) are almost the same, the Tabu-ITP reduces the time
cost by 19% on average.

In conclusion, the main contributions of this paper are:

• We propose an ITP mechanism which maps the time-
sensitive flows onto the underlying resources both tem-
porally and spatially to make CQF practical.

• We provide a global resource abstraction to describe the
key resource and constraints without exposing irrelevant
underlying details to upper mapping algorithm designers.

• A few strategies guided by domain-specific knowledge
in CQF-based TSN are concluded to help designers to
optimize their mapping algorithms.

• We design a novel heuristic algorithm named Tabu-ITP

as a general solver for CQF-based TSN and evaluated
under various typical topologies and settings.

The rest of this paper is organized as follows. We introduce
the motivation in Section II and state the problem in Section
III. The algorithm design is proposed in Section IV. Section V
and VI present the evaluation results and discussions, followed
by the related work and conclusion in Section VII and VIII.

II. MOTIVATION

This section describes the motivation of this work according
to our early-stage analysises and investigations of CQF.

A. Features of CQF

In order to illustrate the features of CQF clearly, we
compare the representative switch models in standard Ethernet,
TTE, and TSN respectively, as shown in Fig. 1. In a Stream
Reservation Protocol (SRP) [2] enabled standard Ethernet
switch, the queue scheduler plays a key role in flow scheduling
for satisfying each flow’s SLA (Service Level Agreement) in
Fig. 1(a). However, it cannot provide a deterministic forward-
ing service as the scheduler does not have a precise time
control over packets. As can be seen from Fig. 1(b) and Fig.
1(c), the switch models in TTE and TSN are time-centric,
which means that the input and output of a packet are strictly
time-constrained. In TTE [26], each arriving packet is checked
whether it is received within a specified receiving window.
And then every legal packet is copied into an exclusive
sending buffer for later transmission. When the specified time
slot in the TX time table arrives, the corresponding packet
would be forwarded without any collisions with other packets.
Therefore, the exact sending time slot for each packet on each
hop in the target network has to be computed by a global
scheduler.

Different from the per-packet scheduling granularity in
TTE, the proposed TAS in TSN is at per-queue scheduling
granularity. This greatly reduced the scheduling complexity
as the number of queues is much smaller than the number
of packets in a network. TAS uses time-controlled gates to
guarantee a deterministic transmission for each periodic time-
sensitive flow. The time-controlled gate executes open/close
operations at the start of every time slot on each queue
according to the Gate Control Lists (GCL) calculated by a
global scheduler. Even though the global complexity of TAS
is already simpler than TTE, it still suffers from the complexity
and scalability problem.

To simplify the design of a TSN switch, CQF is proposed
in IEEE 802.1 Qch standard by installing fixed configurations
on the Gate Control Lists (GCL) of TAS. There are two

queues performing en-queue and de-queue operations in a
cyclic manner under the control of RX GCL and TX GCL,
as illustrated in Fig. 1(c). The reason why CQF could provide
the deterministic latency relies on two principles. First, the
sending time slot and the receiving time slot of a packet on
two adjacent switches must be the same. Second, a packet
received at a time slot must be sent at the next time slot in
a switch. Thus, the predictable end-to-end latency windows
only depend on the time slot size and path length. Compared
with the switch model in TTE and TAS, CQF could be
easily supported by extending a standard Ethernet switch with
statically configured Ping-Pong queues. The main problem for
making CQF practical is how to map the time-sensitive flows
onto the underlying Ping-Pong queues in switches.

host1

host2

host3SW1

f1

f2

Features of f1 and f2:
period = 2T

deadline = 5T

pkt_num = 2

Fig. 2. A simple scenario with two time-sensitive flows.

host1 SW1

host2 SW1

SW1 host3

1,1

1,1

1,2

1,2

1,1

slot0 slot1

1,2

T

i,j j-th pkt in the i-th period of f1

delay = 2T

drop

(a) Before regulation

1,1

1,1

1,2

1,2

1,1

slot0 slot1 slot2

1,2

2,1 2,2

1,1 1,2

delay = 3T

i,j j-th pkt in the i-th period of f2

1,1 1,2

delay

(b) After regulation
Fig. 3. Examples before/after regulating the injection time slot.

B. Observations for CQF Mapping Problem

In most standard Ethernet switches, the packet data is stored
in a buffer pool while queues are used to store packets’
metadata for scheduling. Thus, the maximal queue length in
a switch is equal to the number of packet buffers in the
buffer pool. The Ping-Pong queues in a CQF-based TSN
switch support both time-division multiplexing2 and spatial
multiplexing. However, there is no need to separately consider
the time-division multiplexing problem for each switch under
CQF mechanism. According to our early-stage investigations,
many periodic time-sensitive flows would easily converge in
a part of queues if being forwarded without an elaborated
planning of sending time. Since the queue length is limited,
many time-sensitive packets will be dropped once a queue
overflows. Actually, this problem can be mitigated by delaying
the sending time slots of time-sensitive flows with offsets,
which makes a more balanced global queue utilization.

To stress it clear, we build a simple scenario where two
time-sensitive flows (f1 and f2) with a period of “2T” are
transmitted by host1−SW1−host3 and host2−SW1−host3

2The global time is divided into multiple equally sized ”time slots” for
scheduling.

separately as depicted in Fig. 2. Each queue can hold two
packets at most in a time slot “T”. Fig. 3(a) shows that the
packets of f2 will be dropped if the packets of f1 and f2
are sent both in slot 0. However, as shown in Fig. 3(b), if we
move the sending time of f2 to slot 1, all the packets can reach
host3 successfully. Clearly, there is a higher queue utilization
in Fig. 3(b). As the resource utilization improves, the number
of schedulable flows grows up.

According to the previous investigations, we can deduce
that the mapping between periodic time-sensitive flows and
queue resources is determined by the per-flow injection time
on end systems in CQF-based TSN. Therefore, in this paper,
we propose a mechanism named Injection Time Planning (ITP)
to optimize the network throughput for time-sensitive flows by
regulating the injection time slots of these flows.

III. PROBLEM STATEMENT

In this section, we build a global resource view and abstract
the resource mapping problem based on our ITP mechanism
in a CQF-enabled TSN network.

Allocatable Resource

Config. Resource

Global Slot 125μs

offset

f1
...

fn

2
...

4

H1

offset

f1
...

fn

0
...

1

H0

Core Constraints

Topology Input

Input

Output

Update

Config

H0 SWnSW0 H1

offset

f1
...

fn

0
...

1

offset

f2
...

fm

1
...

3

Sn port0

slot1
...

free:5

used:5
...

slotn
free:3

used:7

...

...

portj

free:4

used:8
...

free:2

used:8

...

...

S0 port0

slot1
...

free:5

used:5
...

slotn
free:3

used:7

...

...

porti

free:4

used:8
...

free:2

used:8

...

...

...

ITP Mechanism

Algorithm Instances

Flow Feature
fid src

0 H0 H1

...dst

...

period

2
...

...

n

...

H0 ... 3H1

�

�

�

�

Fig. 4. A global resource view of CQF-enabled TSN network.

A. Resource View in ITP

Based on the CQF-based data plane, a resource view is
extracted to decouple the algorithm design from the underlying
complex implementation in Fig. 4. The main modules are
described as follows.

• Topology. It describes all nodes, including switches, end
systems, and their connectivities.

• Flow Feature. It presents the basic attributes of time-
sensitive flows, such as source, destination, period, etc.

• Allocatable Resource. It shows the state of each queue
resource blocks identified by space (switch and port) and
time (time slot).

• Configurable Resource. It denotes the configuration
information that will be installed into the data plane.
Based on our observations, it mainly contains per-flow
injection time slots and the global time slot size.

• Algorithm Instance. Different algorithms instances can
be implemented based on the ITP mechanism. The basic

constraints in the following subsection must be satisfied.
Besides, users can append application-related constraints.

The entire workflow is described as follows. First, the
topology and flow features are loaded into the algorithm (step
1). Then, an ITP-based algorithm instance is performed to plan
the injection time slot for each flow under multiple constraints.
In this process, the state of the allocatable resource is updated
once a flow is mapped (step 2). Finally, the synthesized results
are outputted to update the configurable resources (step 3), and
these configurations are issued into the hosts and switches in
the data plane (step 4).

B. Problem Formalization

We abstract the physical topology as a graph G = {V ,E}.
Here V is a set of vertices including the switches and hosts
denoted as S and H respectively. E represents a set of directed
edges connecting any two vertices.

Since every port in a switch has exclusive CQF queues,
the path info should include the outport in each hop. In this
paper, the path is described only with the switch nodes that
a flow traverses because all allocatable queue resources are
in switches. Eq. (1) depicts the entire path where S(1 ,0) and
S(j ,k) are the first and last switch info respectively. j and k
are the sequence number of switch (starting from 1) and port
(starting from 0) respectively.

path = (S(1 ,0), ...,S(j ,k)) (1)

The allocatable resources consist of multiple queue re-
source blocks. The state of each queue block is described
as Q

T(t)

S(j ,k)
(free, used), where T(t) is the sequence number of

time slots, free and used are the number of current free and
occupied buffers respectively.

∀fi ∈ F , i ∈ [0 ,n − 1]

fi = {src, dst , period , pktnum , deadline, path, offset}
(2)

Here F is the set of time-triggered flows, and the number of
flows is n . The feature of each flow consists of source host,
destination host, packet number, period3, and deadline4. The
path info and the configurable offsets of the injection time
slot are at per-flow granularity. Thus, these two factors are
appended into flow features, as shown in Eq. (2).

C. Core Constraints in ITP

The regulation of the injection time slot in the proposed ITP
mechanism is restricted under multiple constraints to guar-
antee the mapping validity. Here we illustrate four essential
constraints that are irrelevant to specific applications. Users
can add extra restrictions according to their requirements.

schedcycle = LCM (F .periods) (3)

Since time-sensitive flows are transmitted in a periodic pat-
tern, the mapping algorithms need to check whether allocation

3The time interval taken to produce the specified number of packets.
4All the packets in each period must arrive at the destination host before a

specific instant of time.

strategies satisfy the resource constraints within a scheduling
cycle. In real scenarios, the periods of flows vary from one
application to another. Here the scheduling cycle is equal to
the least common multiple of all flow periods in Eq. (3).

1) Offset Constraint: the offset constraint requires that the
offset of the injection time slot should be smaller than the
flow period. For example, the packets in the first period of a
flow have been forwarded before that generated in the second
period. There are two reasons for this constraint. First, if
this constraint is not satisfied, the packets in multiple periods
would occupy the limited storage resource of NIC (network
interface card) in hosts simultaneously. Second, this constraint
restricts the offset into a reasonable range, which reduces the
search space of the per-flow offset.

∀fi ∈ F , i ∈ [0 ,n − 1]

0 6 fi .offset <
fi .period

slotcycle

(4)

where slotcycle is the size of the time slot.
2) Time Slot Constraint: this constraint mainly describes

the upper and lower bound of a time slot. In this paper, the
granularity of offset is a time slot. It means all periods should
be divisible by the pre-defined time slot. Thus, the maximal
time slot is the greatest common divisor of the periods set in
Eq. (5).

max (slotcycle) = GCD(F .periods) (5)

With regard to the minimal time slot, it needs to guarantee
that all the packets in the CQF queue are transmitted from the
upstream node to the downstream node within the same time
slot in Eq. (6).

min(slotcycle) =
Queuesize ×MTU

B
+ hopdelay + syncprec (6)

where Queuesize is the maximum packet amount that each
queue can hold, MTU is the maximum packet length. B is
the link bandwidth, hopdelay is the internal processing delay
and propagation delay in a switch and syncprec is the clock
synchronization precision.

3) Receiving Window Constraint: the constraint is to check
whether a packet arrives at each switch within the right
window. In theory, all packets satisfy this constraint if the slot
size is not less than the minimal time slot defined in constraint
2. The receiving time slot for each packet in every hop is
shown in Eq. (7).

∀fi ∈ F , i ∈ [0 ,n − 1],Sj ∈ fi .path

Rslot(fi ,Sj) = fi .offset + hop(Sj , fi)
(7)

where hop(Sj , fi) starts from 0 and indicates which hop
switch j is in the path of flow i .

If this flow is scheduled successfully, the upper bound Urw

and lower bound Lrw of the receiving window are calculated
in Eq. (8).

Urw(fi ,Sj) = (Rslot(fi ,Sj) + 1) ∗ slotcycle + syncprec

Lrw(fi ,Sj) = Rslot(fi ,Sj) ∗ slotcycle − syncprec
(8)

4) Deadline Constraint: in ITP, delaying injection time slot
of flow would affect the arrival time at the destination. This
constraint is important to restrict all packets of each flow
arriving before the specified deadline.

∀fi ∈ F , i ∈ [0 ,n − 1]

fi .offset + hopnum(fi) 6
fi .deadline

slotcycle

(9)

where the hopnum(fi) is the number of switches in the path
of flow i .

5) Queue Resource Constraint: the queue resource is split
into multiple queue resource blocks according to the combina-
tion of [switch, port, slot]. The usage of each queue resource
block should not exceed the queue length.

First, we set up the mapping between flows and resource
blocks. Here the resource block in the k th port of j th switch at
the t th slot is denoted as Q

T(t)

S(j ,k)
. And Sj .Pnum is the number

of ports in the j th switch. If a flow occupies a resource block,
the mapping value M (fi ,Q

T(t)

S(j ,k)
) is 1, as shown in Eq. (10).

Otherwise, it is 0.

∀fi ∈ F , i ∈ [0 ,n − 1], ∀j ∈ [0 ,m − 1]

∀k ∈ [0 ,Sj .Pnum − 1],∀t ∈ [0 ,
schedcycle

slotcycle
− 1]

M (fi ,Q
T(t)

S(j ,k)
) = 1

s.t.

S(j , k) ∈ fi .path, α ∈ [0 ,
schedcycle

fi .period
− 1]

t = (fi .offset +
α× fi .period

slotcycle
+ hop(Sj , fi)) mod (

schedcycle

slotcycle
)

(10)

where m is the number of switches in the graph. Since the
schedcycle is the least common multiple of all the periods of
flows, a flow may be transmitted from the host for multiple
times. α represents which period the packets belong to. It is
used to compute the time slot that the flow occupies within
schedcycle .

In some cases, the packets forwarded in the first schedcycle
cannot arrive at the destination host before the second slotcycle
starts. Therefore, the initial resource state in the first schedcycle
is different from that in the second schedcycle . In order to solve
this problem, the time slots that the packets occupy in the first
schedcycle are limited within schedcycle by the mod operator
in Eq. (10).

∀fi ∈ F , i ∈ [0 ,n − 1], ∀j ∈ [0 ,m − 1]

∀k ∈ [0 ,Sj .Pnum − 1], ∀t ∈ [0 ,
schedcycle

slotcycle
− 1]

n−1∑
i=0

C (i)×M (fi ,Q
T(t)

S(j ,k)
)× fi .pktnum 6 Queuesize

(11)

Based on the constructed mapping, the resource constraint
is formalized in Eq. (11). We use C (i) to indicate whether
the i th flow could be mapped or not. C (i) is 1 if the flow is
mapped successfully. Otherwise, it is 0.

In this paper, our optimization objective is to maximize the
number of mapped flows, which is expressed as:

maximize

n−1∑
i=0

C (i) (12)

IV. ALGORITHM DESIGN

In this section, we first analyze the problem scale and the
choice of search algorithms. Then some optimizations with
domain-specific knowledge are introduced to get a good trade-
off between the mapping quality and the searching overhead.

The computation of mapping time-triggered flows onto un-
derlying queue resources is equivalent to the bin packing prob-
lem and is NP-hard [8]. The search space is

∏n−1
i=0

fi .period
slotcycle

where n is the number of flows. In order to reduce the
complexity while getting a near-optimal solution, we choose
computation-intensive heuristics to solve this problem.

The existing heuristic algorithms, such as Simulated An-
nealing (SA) [10] and Tabu [9], provide generic solutions for
the planning problem in many fields. For a specific planning
problem, users need to implement customized algorithms
by combining these ideas with domain-related features for
better solutions. In this paper, we designed a novel Tabu-ITP
algorithm based on Tabu search for the advantage of recording
the previously visited solutions. And the SA-ITP algorithm is
implemented as a counterpart.

However, it is difficult for heuristic algorithms to find
a high-quality solution for large scale problems within an
acceptable time. We observe that domain-specific knowledge
(DSK) could accelerate the entire searching process while
guaranteeing the quality of the final solution. Therefore, it
is crucial to optimize the generation of candidate solutions
by introducing the DSK guided strategies. In this paper, we
divide the generation of candidate solutions into two stages.
The first stage is to decide the generation mode of candidate
solutions. The second stage is to execute the search strategy
for candidate solutions under the specified generation mode.

A. Generation Mode

Here we separate the flow set into two subsets: Fsuc

and Ffail. Fsuc is the set of flows that have been mapped
successfully while Ffail is the set of flows that fail to be
mapped. Here we propose two modes to generate candidate
solutions by changing the context of current Fsuc and Ffail.

1) Exchanging Mode: in this mode, a set of mapped flows
are substituted with a set of unmapped flows, i.e., a part of
flows in Fsuc are moved into Ffail. At the same time, the
usage of every queue resource block belonging to these flows
is cleaned. Subsequently, the flows in Ffail are inserted into
Fsuc until the resources are not enough to be allocated.

2) Shifting Mode: different from Exchanging mode, Shift-
ing mode only shifts the injection slots of some flows in Fsuc

for getting a new distribution of resource occupancy. Then,
the flows in the Ffail attempt to be mapped.

These two modes only define the basic process to generate
candidate solutions. In each mode, there are many factors
affecting the mapping results, such as which flows in Fsuc

are substituted/shifted, which flows in Ffail are suitable to be
inserted into Fsuc first, and how to determine the injection
time slot of each selected flow.

B. Searching Strategy

The searching strategy focuses on how to search for the
candidate solution in a specified mode. The search needs to
choose a flow and the corresponding offset of the injection
time slot. In this paper, we present two searching strategies.

1) Random Search: random search is to select the flows and
injection time slots randomly without any prior knowledge.
For example, in Exchanging mode, we randomly remove
several flows into Ffail at first. Then the flows in Ffail are
inserted into Fsuc in random order with random slot selection.

2) Domain-Specific Knowledge (DSK) Guided Search: in
particular fields, domain-specific knowledge is suitable to be
introduced for reducing the unnecessary search efforts and
getting a near-optimal result. Here we present two DSK-based
strategies by combining the flow features and resource state.

Multi-Level Sorting. The flow sequence has an important
effect on the mapping results. We observe that the sorting
policies based on different flow features result in different
results. Thus, we propose a multi-level sorting policy based on
the priority order of flow features. The priority is determined
by the results under a single flow feature based sorting. In
fact, the priority order may be different from scenario to
scenario. The sorting strategy for each flow feature is fixed
for improving the number of mapped flows. As for packet
number and path length, the flow with a larger value should be
selected first. With respect to period, the flows with long period
should be mapped first because that with low period would
appear more often within a schedcycle. Finally, the flows with
low deadline should be selected first for high probability of
success.

∀j ∈ [0,m− 1], ∀k ∈ [0, Sj .Pnum − 1],∀t ∈ [0,
schedcycle

slotcycle
− 1]

D =

∑Q
T(t)

S(j ,k)
.used −

∑
Q

T(t)
S(j ,k)

.used∑m−1
j=0 Sj .Pnum×

schedcycle
slotcycle

2

∑m−1
j=0 Sj .Pnum ×

schedcycle
slotcycle

(13)

Flow Density. This concept is introduced to describe the
uniformity of distributions for allocated queue resources. If
the injection time slots of flows are regulated randomly, some
flows would be aggregated at the same queue resource blocks.
It means some resource blocks would be the hotpots so that
some flows are impeded from being mapped. Here the variance
of usage of global resource represents the flow density (D),
as depicted in Eq. (13). If the path is pre-determined, the flow
density could be described with the variance of the consumed
resource only on the flow path.

3) Probabilistic Selection: in theory, although the DSK
guided search could accelerate the convergence of results, the
search space is limited. On the contrary, local optima could
be avoided with the random search. However, the number

of iterations in random search is high because numerous
poor solutions would be found. In this paper, the probability
coefficient (δ) is introduced to determine the search strategy
in every iteration according to a pre-defined probability. This
method results in a satisfying trade-off between the overhead
(convergence speed) and the quality of mapping results.

Algorithm 1: Tabu-ITP in Exchanging Mode
Input: Flow set: F , Queue resource set: Q
Output: Fsuc

1 initresult, curresult ← compute init result(F,Q);
2 while curiteration < maxiteration do
3 curnum ← 0;
4 while curnum < maxnum do
5 canresult ← curresult;
6 if random() ≥ δ then
7 dsk remove flows(canresult, Q);
8 dsk insert flows(canresult, Q);
9 else

10 random remove flows(canresult, Q);
11 random insert flows(canresult, Q);

12 CANset ← canresult;
13 curnum ++;

14 bestresult ← tabu update best(CANset);
15 curresult ← tabu update cur(CANset);
16 if repeatnum ≥ maxrepeat then
17 return bestresult.Fsuc;

18 curiteration ++;

19 return bestresult.Fsuc;

With these optimizations, the Tabu-ITP in Exchanging mode
is designed in Algorithm. 1. The outer loop counts the iteration
number until it exceeds the maximal number. In each iteration,
the inner loop generates a set of candidate solutions. In line 6,
a random number is generated to determine the search strategy
for the new solution. The DSK guided search is executed in
line 7-8 while the random search is used in line 10-11. After
the candidate solution set is generated, the generic method
for updating the best-so-far and current solution in Tabu is
performed in line 14 and 15. In order to reduce the superfluous
search, the algorithm would be terminated when the repetition
of the current best solution exceeds the pre-defined maxrepeat.

V. EVALUATION

According to the described algorithm in Section IV, we
implemented Tabu-ITP based on the well-known Tabu search
[9]. The Tabu-ITP algorithm is optimized by domain-specific
knowledge to achieve a good trade-off between results’ quality
and overhead.

To demonstrate the effectiveness of our proposed algorithm,
we compare our Tabu-ITP with three counterparts, including
a Naive algorithm, a Greedy-ITP algorithm and a SA-ITP
algorithm under different settings in three typical industrial
network topologies. The Naive algorithm is to send packets
once they are generated without regulating the injection time
slot. The other two algorithms are implemented based on ITP
mechanism. To be specific, the Greedy-ITP algorithm derives a

mapping based on the greedy policy. The greedy policy refers
to the domain-specific knowledge-based search described in
Section IV. And the SA-ITP is based on another heuristic
search method named Simulated Annealing (SA) [10]. The
method to generate candidate solutions in SA-ITP is the same
as that in Tabu-ITP.

A. Experiment Setup

All our experiments are conducted on a server with dual
Intel Xeon Gold 5120 CPUs (2.2GHz, 56 cores in total) and
128GB of RAM.

1) Topology Selection: the industrial control network is
mainly based on the following three topologies: linear, ring,
and snowflake, as shown in Fig. 5. Flows in a linear topology-
based network can be transmitted in both directions. Differ-
ently, flows in a ring topology-based network can only be
transmitted in the same direction, i.e., either clockwise or anti-
clockwise. A snowflake topology is a specific tree where the
number of ports in each switch (except the edge switches) is
the same. In our experiments, we set the maximal hop count
as 15 in the linear and ring topology and 17 in the snowflake
topology.

(a) Linear (b) Ring (c) Snowflake
Fig. 5. Topologies under test.

2) Resource Setting: the resource settings in our experi-
ments include link bandwidth, queue length, and global time
slot size. Here, we set the link bandwidth to 1000Mb/s, the
length of each CQF queue to 10 and the global time slot size
to 125us. The length of each CQF queue is set to 10 for two
reasons. First, a time-sensitive packet is not allowed to be
cached in a switch for a long time to provide a deterministic
forwarding service. Second, the on-chip memory in most TSN
switches is limited. As for the global time slot size, we select
the minimum time slot, which is 125us according to the Eq.
(5), to increase search space of the per-flow injection time slot.

3) Flow features: since there is no open-source flow set
available for TSN testing, we refer to the traffic characteristics
described in IEC/IEEE 60802 standard for industrial automa-
tion networks [1]. All flows in our experiment are generated
randomly under the guidance of 60802 standard. Thousands
of flows are generated for a better comparison. The packet
number in each period for each flow is selected from set
{1, 2}. The period and deadline of each flow are milliseconds
in general. We simulate two sets of periods including {4, 8}ms
and {2, 4, 6, 8, 10}ms. In our experiments, we only generate
unicast flows as multicast flows can be split into multiple
unicast flows.

B. Experimental Results

Before analyzing the results, we introduce the parameter
settings in Tabu-ITP and SA-ITP briefly. Here the size of the

tabu list is 500, and the cooling rate in SA-ITP is 0.995. We
set the maximum iterations and the maximum repetition as
50000 and 200 respectively for the two terminal conditions
in Algorithm 1. In each iteration, 10 candidate solutions are
generated. And 5 flows in the set of mapped flows Fsuc

are substituted/shifted for producing a candidate solution. We
perform each test 50 times and compute the average of mapped
flow number, resource utilization, and time cost.

1) Exchanging mode vs Shifting Mode: the difference from
Exchanging mode and Shifting mode is compared under dif-
ferent flow number in Fig. 6. As the number of flows goes up,
the improvement from Tabu-ITP and SA-ITP with Exchanging
mode becomes larger than that with Shifting mode. The
maximal improvement is 28.6% when the flow number is
2000. The reason is that Shifting mode only tunes the injection
time of the flows in Fsuc, where the changes of resource
usage are much less than that brought by Exchanging mode.
Therefore, in the follow-up experiments, the Exchanging mode
is adopted.

2) Random Search vs Domain-Specific Knowledge (DSK)
Guided Search: the difference of Random Search and DSK
Guided Search is tested in Greedy-ITP Algorithm. The re-
sults with different sorting policies and selection policies of
injection time in ring topology are shown in Fig 7. The
mapping result derived from the flow density-based selection
of injection time slot is better than the one derived from the
random selection of injection time slot in any sorting policy.
The maximum gap between the results derived from the two
strategies above reaches up to 17%. In terms of results with
different sorting policies, the value from high to low is: path
length, packet number, period, and deadline. The multi-sorting
policy is based on this order and achieves an improvement
of 34.7% than the cases without sorting. While in linear and
snowflake topology, the importance of packet number is higher
than path length because the average path length in these two
topologies is smaller than that in a ring topology. In total, the
mapping result with the DSK guided search is 39% higher
than that with the random search on average.

3) Effect of Probability Coefficient: the Tabu-ITP and SA-
ITP algorithms under different probability coefficient (δ) is
tested to obtain a good tradeoff between convergence speed
and mapping quality. All candidate solutions are generated
based on the DSK guided search when δ is 0. On the other
side, all candidate solutions are generated based on the random
search when δ is 1. Fig. 8 depicts the mapped flow number
and the iteration number under different values of δ. With
regard to SA-ITP, the mapped flow number increases from
1060 to 1150 when δ moves from 0 to 0.1. At the same time,
the iteration number surges from 234 to 50000 and remains
unchanged when δ continue to grow. Since there is only a
slight fluctuation in the mapped flow number when δ is greater
than 0.1, the δ for SA-ITP is set as 0.1 in the follow-up tests.
With regard to Tabu-ITP, as δ increases from 0 to 0.7, the
mapped flow number goes up from 1069 to 1142, which is
very close to the best results in SA-ITP. Therefore, in the
subsequent tests, the δ is set as 0.7 for Tabu-ITP because the

��� ���� ���� ����
� #)��(!

���

���

���

	��

��

���

����

����

����
�

�$
$�

��
�

(!
��"��,����"#��&�,������� #)&�,�$�%�#����+���
-!&

���(������*���"��
���(���������'
�������*���"��
����������'

Fig. 6. Exchanging mode vs Shifting mode.

� � "$������� ��"� � ��$�%� ��$� �%�$�
� "$����� ���'

���

���

���

	��

��

���

����

����

�
�!
!�
��
�
%�

�����)����� ��#�)�������� &#�)�!�"� ����(���
*�#

���� ����#��
��#�$'���#��

Fig. 7. Random search vs DSK guided search.

� ��� ��� ��	 ��
 ��� ��� �� ��� ��� �
�'%���!"!),��%���!�!�$)��δ�

���

���

���

���

����

����

����

����

����

�
�&
&�
��
�
*#

���*�������&&����*#
���*������)�'�)!%$��*#
���������&&����*#
��������)�'�)!%$��*#

�

�����

�����

	����

����

�����

�)�
'�
)!%

$�
�
*#

�!$ �.����$%��(�.�������"%+(�.�&�'!%����-
���/#(

Fig. 8. Comparison under different δ.

���� �� &����� �����"
� ! � �'

�
���
���
���
	��

����
����
����
����

�
�!
!�
��
�
$�

���� ��#�)�������� &#�)�!�"� ��
�(���	*�#

���%�
�"���'���

�����
���$���

(a) Mapped flow number

� $� �$%,�"�!� � $��'
�%&%"%�-

���
���
���
���
���
��	
��

���
���
��
���

��
(%

*'
��

��
) "

 .
�)

 %
$

�	�$%��(�0�������"%,(�0�&�' %����/����1#(

�� +�
�'���-����

������
���*����

(b) Resource utilization

���� �� '����� �����"
� ! � �(

��#

��#

���

���

��
�
��
�

#$

���� ��#�*�������� '#�*�!�"� ��
�)���	+�#

���&�
"���(����

������
���%����

(c) Time cost
Fig. 9. Comparison of Naive, Greedy-ITP, SA-ITP, and Tabu-ITP algorithms under three different topologies.

extra search is unnecessary when the iteration number increase
from 38000 to 50000. The near-optimal result is achieved by
introducing a reasonable amount of random solutions. The
convergence speed of SA-ITP is slower than Tabu-ITP because
the tabu list reduces the repetitions of locally optimal solutions.

4) Comparison of Algorithms with Optimizations: in the
above experiments, the most reasonable optimizations are
determined. In the next experiments, all the algorithms with
these optimizations are compared under different scenarios.

���$� � ���&��� ����� ���#���
���� �"��

�

���

���

���

	��

����

����

�
��

��
��

�
#�

 ����(��������!�(���������%!

�� ����
�'���)�!
�� ����
�'���������	����)�!

(a) Mapped flow number

���%� �!���'���� ������ ���$����
����!�#��

��"

��"

���

���

��
�
��
�

"#

!����)��������"�)���������&"

 �!������(���
*�"
 �!������(������	��
����*�"

(b) Time cost
Fig. 10. Comparison of Naive, Greedy-ITP, SA-ITP, and Tabu-ITP algorithms
under different period sets.

First, four algorithms are compared by mapped flow num-
ber, resource ratio, and time cost under different network
topologies. The successfully mapped flow number using Tabu-
ITP and SA-ITP are the highest, which improves the number
of the mapped flows by around 10% and 10x compared with
Greedy-ITP and Naive algorithms respectively, as plotted in
Fig. 9(a). The mapped flow number in the ring topology is
the least compared with the other two topologies. The reason
is that each switch only has one output port in ring topology
and flows are easily aggregated at same resource blocks. The
resource utilization is the proportion of the allocated queues
over the total queues of all ports, excluding the one connected
to the host. Fig. 9(b) depicts that the resource utilization

with Naive algorithm is only 10% on average. The Tabu-ITP
improves the resource ratio by 65% on average. The resource
utilization in Greedy-ITP, SA-ITP and Tabu-ITP are almost the
same, and the resource utilization in ring topology reaches up
to 96%. It means that the existing best solution is close to the
optimal solution. As for time cost, the Naive and Greedy-ITP
algorithm consumes around 1ms and 10s respectively because
the computing complexity is very low in Fig. 9(c). The time
costs of SA-ITP and Tabu-ITP are over 15 minutes because
of the much larger search space. Obviously, compared with
SA-ITP, Tabu-ITP reduces the time cost by 19% because the
tabu list blocks the existing local optimal results.

Next, four algorithms are compared in ring topology under
two different periods set. The first and second period set are
{4, 8}ms and {2, 4, 6, 8, 10}ms respectively. In Fig. 10(a), the
mapped flow number with the first period set is higher than
that with the second set because the flows with small period
occupy more queue resource than that with large period. In
Fig. 10(b), the time consumed under the second set is longer
than that with the first period set because the schedcycle for
the second set has 960 slots while that for the first set only
involves 64 slots.

VI. DISCUSSION

A. Choice of Time Slot

In this paper, the global time slot of a CQF-based TSN
switch is set to the minimal time slot for maximizing through-
put by improving the frequency for switching the Ping-Pong
queues. The smaller the time slot is, the more likely a time-
sensitive flow is mapped. However, with the decrease of the
time slot, the searching space and therefore the time overhead
for each flow grows. This paper focuses on maximizing the

time-sensitive flow number that can be mapped onto the target
CQF-based network at offline stage. While in online flow
mapping, it is a totally different scenario. To be more specific,
the mapping algorithm must generate new solutions as quick
as possible, and the time exhaustive mapping algorithms is no
longer accepted. In fact, the number of time-sensitive flows
in most scenarios is not very large. Therefore, we would
research how to make a good trade-off between the theoretical
bandwidth and computing complexity.

B. Path Selection

This paper focuses on the regulation of per-flow injection
time. The path for each flow is pre-settled because the path
is unique in the topologies under test. In fact, if the path has
multiple choices, the successfully mapped flow number will
increase with the guidance of flow density. In our next step, the
path and injection time slot jointly planning will be researched
for achieving better results.

C. Application Constraints

In this paper, we aim to provide a generic mechanism for
making CQF practical, and we do not consider the various
requirements from upper applications. Here we set all the
time-sensitive flows in a standalone mode, and there is no
dependence between any flows. In fact, some applications have
specific constraints. For example, the packets from flow A
should be transmitted before that from flow B . When different
users apply our algorithm, it is easy to extend these constraints
without much effort.

VII. RELATED WORK

Static Schedule. Steiner et al. focus on the static schedule
synthesis of time-triggered flows in TTE-enabled network with
SMT/OMT solver [24] [21] [22]. However, the computing
overhead of SMT/OMT is high in a large-scale network. [24]
divides the flow set into multiple subsets. These subsets are
then loaded into SMT solver incrementally, and backtracking
is used to alleviate conflicts. [22] propose to isolate these sub-
sets in different search spaces to avoid backtracking. However,
some free time slots in a search space could not be used by the
flows in other subsets. In this paper, we focus on reducing the
computing overhead with domain-specific knowledge, which
is orthogonal to the optimizations above.

The schedule in the model of TTE is per-packet while the
schedule in TAS [3] is per-queue. [6] observes that when
two flows from different links arrive at the same queue, the
order in which these frames are placed in the queue is non-
deterministic because of synchronization errors, frame loss,
etc. To solve this problem, the constraints in TTE are extended
with frame isolation restriction. Recently, [20] propose to
formalize the constraints via the first-order theory of arrays. [7]
abstracts the schedule in IEEE 802.1 Qbv into no-wait packet
scheduling problem, and the algorithm uses Tabu search to
reduce the overhead of ILP solver. However, the constraint
of queue resource is not analyzed deeply in these papers.
We focus on the mapping between the time-sensitive flows

and the underlying queue resources from temporal and spatial
dimensions.

Dynamic Schedule. With the dynamic change of traffics
and topologies, Wan Hai et al. observe that it is time-
consuming and unpractical to reschedule a large flow set with
incremental approaches [29]. They present an algorithm based
on mixed-integer linear programming and counterexample re-
solving process for reacting to the changes fastly. [17] focus on
designing a reconfiguration mechanism to minimize the con-
flicts of packets during the network updates. [14] introduces
Software-Defined Networking [12] to synthesize schedules
based on the global view. IEEE 802.1 Qcc [4] proposed a
centralized model to perform flow mapping with a centralized
network configurator (CNC). Our Tabu-ITP and Greedy-ITP
algorithm are suitable to be applied in CNC for satisfying
static and dynamic mapping requirements respectively.

Mixed-criticality Schedule. In the industrial control net-
work, the flows from different applications are categorized
into three types [26]. The priority of them from high to low
is: time-sensitive flows, rate-constrained flows and best-effort
flows. [26] [25] observe that back-to-back transmission of
time-sensitive flows may lead to substantial delays for rate-
constrained frames. They proposed to insert blank intervals for
reducing the delay of rate-constrained flows without violating
the constraints of time-sensitive flows. In the CQF model [5],
when all the time-sensitive packets in CQF queue has finished
before time slot switching, the left time could be utilized to
transmit other flows. In the future, how to support mixed flows
efficiently in CQF model would be an interesting direction.

VIII. CONCLUSION

In this paper, we proposed a global planning mechanism ITP
for making CQF practical in TSN. The core idea of ITP is to
map the time-sensitive flows onto the underlying CQF queue
resources efficiently by regulating the per-flow injection time
slot. With ITP mechanism, we set up a global resource view to
provide a high-level abstraction of resource mapping problem
for upper algorithm designers. Then a novel heuristic algo-
rithm named Tabu-ITP was implemented under the guidance of
domain-specific knowledge in CQF-based TSN. Finally, three
typical topologies in the industrial control network were used
to evaluate our work. The experimental results demonstrate
that Tabu-ITP improves the mapped flow number and resource
utilization by 10x and 65% respectively when compared with
the Naive algorithm without ITP. Compared with SA-ITP,
Tabu-ITP reduces the computing overhead while mapping
almost the same number of time-sensitive flows.

ACKNOWLEDGMENT

This work is supported by National Key Research and
Development Program of China (Grant No.2018YFB1800505,
2018YFB1800402), National Natural Science Foundation of
China (Grant No.61702538, 61802417, 61601483), Training
Program for Excellent Young Innovators of Changsha (Grant
No.kq1905006) and Research Project of National University
of Defense Technology (Grant No.ZK17-03-53, ZK18-03-40).

REFERENCES

[1] IEC/IEEE 60802 TSN Profile for Industrial Automation. https://1.ieee
802.org/tsn/iec-ieee-60802.

[2] IEEE 802.1Qat Standard. www.ieee802.org/1/pages/802.1at.html.
[3] IEEE 802.1Qbv Standard. http://www.ieee802.org/1/pages/802.1bv.ht

ml.
[4] IEEE 802.1Qcc Standard. https://1.ieee802.org/tsn/802-1qcc/.
[5] IEEE 802.1Qch Standard. https://1.ieee802.org/tsn/802-1qch/.
[6] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelı́k, and Wilfried

Steiner. Scheduling Real-Time Communication in IEEE 802.1 Qbv Time
Sensitive Networks. In International Conference on Real-Time Networks
and Systems, pages 183–192, 2016.

[7] Frank Dürr and Naresh Ganesh Nayak. No-Wait Packet Scheduling for
IEEE Time-Sensitive Networks (TSN). In International Conference on
Real-Time Networks and Systems (RTNS), pages 203–212, 2016.

[8] Emanuel Falkenauer and Alain Delchambre. A Genetic Algorithm
for Bin Packing and Line Balancing. In International Conference on
Robotics and Automation, pages 1186–1192, 1992.

[9] Fred Glover and Manuel Laguna. Tabu Search. In Handbook of
Combinatorial Optimization, pages 2093–2229. 1998.

[10] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization
by Simulated Annealing. Science, 220(4598):671–680, 1983.

[11] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinham-
mer. The Time-Triggered Ethernet (TTE) Design. In International Sym-
posium on Object-Oriented Real-Time Distributed Computing (ISORC),
pages 22–33, 2005.

[12] Diego Kreutz, Fernando Ramos, Paulo Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-Defined
Networking: A Comprehensive Survey. arXiv preprint arXiv:1406.0440,
2014.

[13] Sune Mølgaard Laursen, Paul Pop, and Wilfried Steiner. Routing
Optimization of AVB Streams in TSN Networks. ACM Sigbed Review,
13(4):43–48, 2016.

[14] Kilho Lee, Taejune Park, Minsu Kim, Hoon Sung Chwa, Jinkyu Lee,
Seungwon Shin, and Insik Shin. MC-SDN: Supporting Mixed-Criticality
Scheduling on Switched-Ethernet Using Software-Defined Networking.
In IEEE Real-Time Systems Symposium (RTSS), pages 288–299, 2018.

[15] Ziyang Li, Yiming Zhang, Yunxiang Zhao, and Dongsheng Li. Efficient
Semantic-Aware Coflow Scheduling for Data-Parallel Jobs. In Interna-
tional Conference on Cluster Computing (CLUSTER), pages 154–155,
2016.

[16] Ziyang Li, Yiming Zhang, Yunxiang Zhao, Yuxing Peng, and Dongsheng
Li. Best Effort Task Scheduling for Data Parallel Jobs. In ACM
SIGCOMM Conference, pages 555–556, 2016.

[17] Zonghui Li, Hai Wan, et al. An Enhanced Reconfiguration for
Deterministic Transmission in Time-Triggered Networks. IEEE/ACM
Transactions on Networking (TON), 2019.

[23] Johannes Specht and Soheil Samii. Urgency-based Scheduler for Time-
Sensitive Switched Ethernet Networks. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 75–85, 2016.

[18] Ahmed Nasrallah, Venkatraman Balasubramanian, Akhilesh Thyagaturu,
Martin Reisslein, and Hesham ElBakoury. Cyclic Queuing and Forward-
ing for Large Scale Deterministic Networks: A Survey. arXiv preprint
arXiv:1905.08478, 2019.

[19] Ahmed Nasrallah, Akhilesh S Thyagaturu, Ziyad Alharbi, Cuixiang
Wang, Xing Shao, Martin Reisslein, and Hesham ElBakoury. Ultra-Low
Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards
and Related 5G ULL Research. IEEE Communications Surveys &
Tutorials, 21(1):88–145, 2018.

[20] Ramon Serna Oliver, Silviu S Craciunas, and Wilfried Steiner. IEEE
802.1 Qbv Gate Control List Synthesis Using Array Theory Encoding.
In IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pages 13–24, 2018.

[21] Francisco Pozo, Guillermo Rodriguez-Navas, Hans Hansson, and Wil-
fried Steiner. SMT-based Synthesis of TTEthernet Schedules: A Per-
formance Study. In International Symposium on Industrial Embedded
Systems (SIES), pages 1–4, 2015.

[22] Francisco Pozo, Wilfried Steiner, Guillermo Rodriguez-Navas, and Hans
Hansson. A Decomposition Approach for SMT-based Schedule Syn-
thesis for Time-Triggered Networks. In International Conference on
Emerging Technologies & Factory Automation (ETFA), pages 1–8, 2015.

[24] Wilfried Steiner. An Evaluation of SMT-based Schedule Synthesis
for Time-Triggered Multi-hop Networks. In IEEE Real-Time Systems
Symposium, pages 375–384, 2010.

[25] Wilfried Steiner. Synthesis of Static Communication Schedules
for Mixed-Criticality Systems. In International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11–18, 2011.

[26] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis
of Communication Schedules for TTEthernet-based Mixed-Criticality
Systems. In International Conference on Hardware/Software Codesign
and System Synthesis, pages 473–482, 2012.

[27] Sivakumar Thangamuthu, Nicola Concer, Pieter JL Cuijpers, and Johan J
Lukkien. Analysis of Ethernet-Switch Traffic Shapers for In-Vehicle
Networking Applications. In Design, Automation & Test in Europe
Conference & Exhibition, pages 55–60, 2015.

[28] Daniel Thiele, Rolf Ernst, and Jonas Diemer. Formal Worst-Case Timing
Analysis of Ethernet TSN’s Time-Aware and Peristaltic Shapers. In
IEEE Vehicular Networking Conference (VNC), pages 251–258, 2015.

[29] Ningchen Wang, Qinghan Yu, Hai Wan, Xiaoyu Song, and Xibin
Zhao. Adaptive Scheduling for Multi-cluster Time-Triggered Train
Communication Networks. IEEE Transactions on Industrial Informatics,
15(2):1120–1130, 2018.

[30] Xiangrui Yang, Zhigang Sun, Junnan Li, Jinli Yan, Tao Li, Wei
Quan, Donglai Xu, and Gianni Antichi. FAST: Enabling Fast Soft-
ware/Hardware Prototype for Network Experimentation. In International
Symposium on Quality of Service (IWQoS), page 32, 2019.

