
17

Combining Source-adaptive and Oblivious Routing with

Congestion Control in High-performance Interconnects

using Hybrid and Direct Topologies

PEDRO YEBENES, JOSE ROCHER-GONZALEZ, JESUS ESCUDERO-SAHUQUILLO,
PEDRO JAVIER GARCIA, FRANCISCO J. ALFARO, and FRANCISCO J. QUILES,
University of Castilla-La Mancha, Spain

CRISPÍN GÓMEZ and JOSE DUATO, Technical University of Valencia, Spain

Hybrid and direct topologies are cost-efficient and scalable options to interconnect thousands of end nodes in

high-performance computing (HPC) systems. They offer a rich path diversity, high bisection bandwidth, and

a reduced diameter guaranteeing low latency. In these topologies, efficient deterministic routing algorithms

can be used to balance smartly the traffic flows among the available routes. Unfortunately, congestion leads

these networks to saturation, where the HoL blocking effect degrades their performance dramatically. Among

the proposed solutions to deal with HoL blocking, the routing algorithms selecting alternative routes, such as

adaptive and oblivious, can mitigate the congestion effects. Other techniques use queues to separate congested

flows from non-congested ones, thus reducing the HoL blocking. In this article, we propose a new approach

that reduces HoL blocking in hybrid and direct topologies using source-adaptive and oblivious routing. This

approach also guarantees deadlock-freedom as it uses virtual networks to break potential cycles generated by

the routing policy in the topology. Specifically, we propose two techniques, called Source-Adaptive Solution for

Head-of-Line Blocking Avoidance (SASHA) and Oblivious Solution for Head-of-Line Blocking Avoidance (OSHA).

Experiment results, carried out through simulations under different traffic scenarios, show that SASHA and

OSHA can significantly reduce the HoL blocking.

CCS Concepts: • Computer systems organization → Redundancy; • Networks → Network reliability;

Additional Key Words and Phrases: HPC, interconnection networks, hybrid and direct topologies, source-

adaptive and oblivious routing, congestion management, HoL blocking

This article is a completely new submission, not published previously in any conference or journal.

This work has been jointly supported by the Spanish MINECO and European Commission (FEDER funds) under the

project TIN2015-66972-C5-2-R (MINECO/FEDER), by Junta de Comunidades de Castilla-La Mancha under the project

SBPLY/17/180501/000498, and by the Excma. Diputacion de Albacete under the project DIPUAB18ESCUDEROSAHUQUIL.

Pedro Yebenes was funded by the predoc grant BES-2013-063681, from the Spanish MINECO and European Commission

(FEDER funds). Jesus Escudero-Sahuquillo is funded by the University of Castilla-La Mancha (UCLM), with a contract

for accessing the Spanish System of Science, Technology and Innovation (SECTI), for the implementation of the UCLM

research program (UCLM resolution date: 31/07/2014).

Authors’ addresses: P. Yebenes, J. Rocher-Gonzalez, J. Escudero-Sahuquillo (corresponding author), P. J. Garcia, F. J.

Alfaro, and F. J. Quiles, University of Castilla-La Mancha, Computing Systems Department, Albacete, 02071, Spain;

emails: pedroyebenes@gmail.com; {jose.rocher, jesus.escudero, pedrojavier.garcia, fco.alfaro, francisco.quiles}@uclm.es;

C. Gómez and J. Duato, Technical University of Valencia, Computing Engineering, Valencia, 46022, Spain; emails:

crigore@gap.upv.es, jduato@disca.upv.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/04-ART17

https://doi.org/10.1145/3319805

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3319805

17:2 P. Yebenes et al.

ACM Reference format:

Pedro Yebenes, Jose Rocher-Gonzalez, Jesus Escudero-Sahuquillo, Pedro Javier Garcia, Francisco J. Alfaro,

Francisco J. Quiles, Crispín Gómez, and Jose Duato. 2019. Combining Source-adaptive and Oblivious Routing

with Congestion Control in High-performance Interconnects using Hybrid and Direct Topologies. ACM Trans.

Archit. Code Optim. 16, 2, Article 17 (April 2019), 26 pages.

https://doi.org/10.1145/3319805

1 MOTIVATION

The number of computing end nodes in the most powerful high-performance computing (HPC)
systems has increased importantly over the decades, as it shows in the evolution of the Top-500
list. In these systems, the interconnection network is a central element that must offer efficient
communication among the end nodes. If the network does not satisfy the communication require-
ments of the applications supported by HPC systems, then it may become the primary system
bottleneck and markedly degrade the performance of the whole system. Hence, the performance
of the interconnection network is always a priority for interconnect researchers, designers, and
manufacturers.

Indeed, in the past decade, many solutions focused on improving different aspects of high-
performance interconnection networks have been developed, such as routing policies, power
efficiency, or switching features. One of these aspects is the network topology, which defines how
the system end nodes are interconnected. The network topology must offer high-communication
bandwidth and low-latency while being able to interconnect thousands of end nodes. Moreover,
the connection pattern of the topology should provide alternative routes to guarantee that in the
event of faults, the routing algorithm can still communicate all the end nodes of the network. These
requirements have been accomplished traditionally by direct network topologies, such as Tori
topologies, which have been used by some of the most powerful supercomputers in the world, such
as Titan [3] and K-Computer [2]. Although direct networks are significantly cheaper to build com-
pared to other network topologies such as CLOS or Fat-tree networks, they offer a smaller bisection
bandwidth that is not likely to be enough for the HPC systems of the future. Note that direct net-
works leverage communication performed mostly among neighbor end nodes, while HPC appli-
cations require many-to-many communication patterns nowadays. In recent years, designers and
researchers have proposed several hierarchical network topologies, such as Dragonflies [23] or
Slim-flies [6], which focus on reducing the number of required network devices by employing
connection patterns of reduced diameter. Based on this idea, hybrid network topologies, such as
KNS [28], have been also proposed in the last years for interconnecting thousands of processing
and storage end nodes. Like Dragonflies and Slim-flies, KNS topologies offer an excellent per-
formance/cost ratio, mainly because they allow short routes and provide path diversity, which
can be leveraged by efficient routing algorithms. Indeed, apart from the topology, the routing
algorithm is another critical aspect that impacts on network performance. In that sense, many
routing techniques have been designed to leverage the network topologies mentioned above. The
proposed routing algorithms are either deterministic, which always communicate two end nodes
using the same path, or adaptive/oblivious, which select among all the available routes between
two end nodes.

Although the topology and routing proposals mentioned above achieve good performance,
when the network traffic load is high, the network may reach the saturation point, then its per-
formance may drop dramatically due to the congestion effects. Congestion is a natural phenom-
enon in interconnection networks, which arises when several packet-flows persistently contend
for the use of network resources, usually links or switch ports. In lossless networks, like those
commonly used in HPC systems, the effect of flow control causes that traffic clogging the internal

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

https://doi.org/10.1145/3319805

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:3

network paths ends up filling buffers as congestion propagates from where it originates back to
the end nodes. Note that packet discarding is not allowed in lossless networks. Hence, congestion
situations lead to the growth of congestion trees [15], which propagate quickly from where they
originate (i.e., the root of the congestion) throughout the entire network, due to the flow-control
backpressure. However, congestion by itself is not responsible for the network performance degra-
dation. Indeed, in the network points where congestion originates, the congested links and ports
are used at their maximum capacity. In situations where congestion episodes generate congestion
trees spreading throughout the network, the performance degradation occurs as the effect known
as Head-of-Line (HoL) blocking appears, which leads to wasting link bandwidth and spoiling net-
work performance. In general, HoL blocking happens at the input ports of the switches when a
packet, which must access to a free output port, is blocked by the packet at the head of its queue,
which is waiting for accessing another output port that is busy at this moment. Hence, a packet
that could potentially continue its traversal through the network stops. The HoL blocking effect
causes that the average packet latency eventually increases and network throughput decreases.
Unfortunately, HoL blocking may also occur in other situations. When this effect appears only in
the switch where the congestion originates, it is known as low-order HoL blocking [21]. By con-
trast, when this effect originates in a switch different from where congestion originates, due to the
backpressure of the flow control mechanism in upstream switches, it is known as high-order HoL
blocking [20]. Therefore, HoL blocking spreads throughout the network, reaching the end nodes,
if we do not take any countermeasure.

Note that current high-speed network technologies for HPC systems, such as InfiniBand or Intel
Omni Path, do not discard packets when congestion appears, in contrast to computer networks like
Internet, because of the overhead introduced by packet retransmission.1 Therefore, HoL blocking
is a threat to the performance of interconnection networks used in HPC systems, so that dealing
with this threat is an essential issue for current commercial products. In that sense, many solutions
have been proposed specially designed to deal with HoL blocking. Many of these techniques divide
the buffer space at the switch port into different queues, then mapping packets to these queues so
that some traffic flows do not share queues with other traffic flows. Some proposals based on this
idea eliminate the HoL blocking [10, 11, 13], but they require additional resources not supported by
current commercial switches. However, there exist feasible queuing schemes that eliminate HoL
blocking partially [4, 9, 32]. Among the latter, the most efficient schemes are those specially de-
signed for specific network topologies and routing algorithms, as they are aware of both topology
and routing features, and this knowledge allows to leverage the network resources available to
deal with HoL blocking. These “tailored” queuing schemes are known as topology- and routing-
aware. In that sense, we proposed the topology- and routing-aware queuing scheme called BBQ
(Band-based Queuing) [34], which is tailored to KNS topologies using the Hybrid-DOR determin-
istic routing algorithm [28]. BBQ significantly reduces the HoL blocking utilizing a small number
of queues per port. However, the Hybrid-DOR deterministic routing algorithm does not exploit the
path diversity of KNS topologies, while adaptive and oblivious routing algorithms could be used
in KNS, alternatively to deterministic ones, offering the possibility of routing packets through al-
ternative routes. Note that adaptive and oblivious routing algorithms can be used to balance the
traffic in the network, so that the link utilization could be more efficient and congestion appearance
may be prevented or delayed. Moreover, when congestion situations are strong and the routing
algorithm by itself is not able to “dissolve” the congestion trees, we could combine these routing
algorithms with queuing schemes further to reduce HoL blocking. However, note that the BBQ

1Although Ethernet technology, commonly used in the Internet Data-centers, is evolving to be lossless, it is not still being

adopted by the HPC industry in their systems.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:4 P. Yebenes et al.

technique was devised assuming the use of deterministic routing so that queuing schemes com-
bined with adaptive/oblivious routing are still an open issue for KNS topologies, which we think
it is worth analyzing.

In this article, we propose a new approach to deal with HoL blocking in KNS and direct
topologies using source-adaptive and oblivious routing algorithms, which could be included with
minimal hardware support in current high-speed network technologies, such as InfiniBand. Our
approach uses virtual networks (VNs) to separate the traffic flows in different layers. We use
separate buffer resources assigning to the VNs different network routes. We define two disjoint
set of routes in the network topology (i.e. KNS and Tori), which are associated, respectively, with
each one of these VNs to prevent deadlocks. Each of the VNs is composed of several queues, so
that traffic flows within the VNs are mapped to these queues based on a queuing scheme to reduce
HoL blocking inside that VN. Based on this idea, we have designed two solutions for HoL blocking
avoidance and deadlock prevention in KNS and direct topologies, called OSHA (Oblivious Solution

for HoL Blocking Avoidance) and SASHA (Source Adaptive Solution for HoL Blocking Avoidance),
which use oblivious and source-adaptive routing, respectively. Note that OSHA and SASHA differ
on the type of routing algorithm used in the network. While OSHA is proposed for networks using
oblivious routing (i.e., the VN to map the traffic flows is selected randomly regardless the network
status), SASHA looks at the occupancy of queues of network interface and maps traffic flows to
the VN with lower occupancy. Moreover, both OSHA and SASHA leverage the queues at each VN
to reduce the HoL blocking using the same queuing scheme, called Dynamic Band-based Queuing
(DBBQ). In general, OSHA and SASHA proposals improve network performance while requiring
just a reduced set of network resources, i.e., they need a small number of queues (2 or 4) per port.
To evaluate these proposals, we have performed extensive simulation experiments in several
KNS and Tori topologies, where we have generated synthetic and trace-based traffic patterns
modeling different congestive episodes. The obtained results show that SASHA and OSHA are
feasible alternatives to reduce HoL blocking in KNS and Tori topologies using source-adaptive and
oblivious routing algorithms. In summary, the main contributions of this article are the following:

• We analyze the congestion dynamics in KNS and Tori topologies using source-adaptive and
oblivious routing.

• For these network configurations, we propose a new approach that uses two virtual net-
works (VNs) to balance the traffic between two disjoint sets of alternative routes. In this
way deadlocks are prevented. Besides, several several queues are used per VN to reduce
HoL blocking inside the VNs.

• Based on this approach, we propose two techniques: OSHA for KNS and Tori networks
using oblivious routing, and SASHA for networks using source-adaptive routing. Both of
them use two VNs assigning them a different set of routes, and a queuing scheme, called
DBBQ that is based on BBQ [34]. DBBQ maps traffic flows to the queues within a VN,
reducing HoL blocking inside that VN.

• We have evaluated OSHA and SASHA through simulation experiments modeling differ-
ent switch architectures and traffic patterns in networks connecting up to 13K end nodes,
looking also at their scalability.

• We provide some implementation details of SASHA and OSHA in InfiniBand-based
networks.

The rest of this article is organized as follows. Section 2 overviews the background and concepts
used in the article, related to network topologies, routing algorithms, and mechanisms to reduce
HoL blocking. Section 3 describes our proposals OSHA and SASHA as well as the DBBQ queuing
scheme. Section 4, discusses the implementation of our proposals in InfiniBand-based networks.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:5

Section 5 shows the evaluation results of our proposals. Finally, in Section 6, some conclusions
are drawn.

2 BACKGROUND DESCRIPTION

2.1 KNS Network Topologies

Network topologies for HPC systems are traditionally classified as either direct or indirect. On
the one hand, direct topologies usually adopt an orthogonal structure, where the end nodes are
organized in a n-dimensional space and connected in each dimension according to a ring or array
arrangement. 2D or 3D direct topologies are relatively easy to build as each topology dimension
is mapped to a physical dimension. Direct topologies with a small number of dimensions tend to
have a large number of end nodes per dimension, which also leads to an increase in communi-
cation latency. Direct topologies with more than three dimensions imply not only increasing the
wiring complexity but also the length of their links when they are mapped to our 3D physical
space, thereby increasing the communication latency and negatively impacting performance. For
instance, there are several examples of direct topologies in the most powerful supercomputers in-
cluded in the Top-500 ranking. In the last list of June 2018, we can see the Gemini topology [3] in
the Titan supercomputer (USA), and the Tofu interconnect [2] in the K-Computer (Japan). On the
other hand, the most common indirect topologies are multistage interconnection networks (MINs)
where switches are arranged in a set of stages. Indirect topologies usually provide better perfor-
mance than direct topologies for a large number of end nodes, at the cost of using a high number of
switches and links and increasing the wiring complexity, which grows with the size of the network.
One example of MIN topologies widely used in HPC systems is the Fat-tree [24]. However, Fat-trees
are naturally deadlock-free topologies that offer a higher bisection than direct topologies, a high
number of alternative routes and reduced diameter. However, both direct and indirect topologies
present significant drawbacks when the number of end nodes to be interconnected is enormous.

Recently, apart from hierarchical topologies, such as Dragonflies [23], Slim-flies [6], or Projec-
tive networks [8], hybrid topologies have been proposed to get the benefits from both direct and
indirect topologies. In general, the objective of hybrid topologies is to provide high-performance
like indirect topologies, but at a similar cost compared to direct topologies. With this objective
in mind, the k-ary n-direct s-indirect (KNS) family of topologies were proposed [28]. Specifically,
KNS topologies organize end nodes in n dimensions, as in a direct network topology, each dimen-
sion having k end nodes, but the end nodes of a given dimension are not interconnected as in
meshes or Tori. Instead, these end nodes are connected utilizing an indirect subnetwork such as a
simple crossbar or switch. Note, however, that the indirect subnetwork may also consist of several
switches arranged in several stages, like Fat-tree networks, instead of a single switch requiring the
use of expensive high-radix switches. The number of stages in the indirect subnetwork is given by
the s parameter. The three parameters k, n, and s give the name to KNS topologies.

Figure 1 shows an example of a two-dimension (2D) 16-node KNS topology connecting 4 end
nodes per dimension, and using 4-port switches in the indirect network (i.e., one stage). Note that
the number of end nodes that this topology can interconnect is given by N = kn . The number
of switches S is given by the formula S = (N × n)/k . Note that each end node is connected to a
different switch in each of the network dimensions. Thanks to this feature, KNS topologies offer a
rich path diversity. In Figure 1 two end nodes can communicate through several routes. Moreover,
KNS topologies allow routes whose length is short on average, leading to lower network latencies
when compared to other network topologies. Both properties ease the implementation of efficient
routing algorithms, such as the Hybrid-DOR, source-adaptive and oblivious (See Section 2.2).
The KNS family of topologies [28] has been evaluated in comparison to other topologies (Tori,

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:6 P. Yebenes et al.

Fig. 1. Example of a 16-node 2D-KNS topology (4-ary 2-direct 1-indirect). Two paths (XY and YX) are shown
for packets from end node 0 to end node 15.

Fat-trees, etc.), comparing cost, performance and complexity, offering a better performance/cost
ratio than indirect topologies, if the number of end nodes to connect is high.

Finally, it is worth mentioning that, to build KNS topologies in real systems, it is required that
network interfaces offer support for re-routing packets among their ports without the intervention
of the host node hardware. For instance, in Figure 1, we need to route packets at node #3 from one
port to another to follow the XY path (colored in blue). This means that the network interfaces
should offer offloaded capabilities to perform the re-routing function. As far as we know this sup-
port is not yet ready in commercial products. However, note that the last InfiniBand-based network
interfaces, such as EDR ConnectX-5 and HDR ConnectX-6 HCAs, offer virtual switching offload
capabilities in the hardware (i.e., Enhanced vSwitch) “for future protocols” (e.g., the Hybrid-DOR
routing for KNS). Therefore, when the re-routing functionality is ready in the network interfaces
(which is doable with the current technology), we could build KNS networks.

2.2 Routing Algorithms

The routing algorithm determines the path followed by a packet from its source to its destination,
and it should guarantee full connectivity and deadlock-freedom. An efficient routing algorithm
balances the traffic flows smartly through the available routes in the network, regardless of the
behavior of the traffic generated by the applications. Moreover, efficient routing algorithms min-
imize the number of hops between any two end nodes, using minimal routes (i.e., routes in the
network performing as fewer hops as possible) to reduce the packet latency. Routing algorithms
can be classified according to several orthogonal criteria. For instance, the following classification
is based on the number of paths available for each source-destination pair:

• Deterministic routing. Packets sent from a given source to a given destination always fol-
low the same path. This type of algorithms is the simplest to be implemented in hardware,
and therefore these algorithms are widely used in commercial products. A well-known de-
terministic routing algorithm is Dimension-order Routing (DOR), used in direct topologies
such as Meshes and Tori. In this algorithm, dimensions are crossed in a given order, so that
all the packets between two end nodes always cross first the intermediate nodes in the first
dimension, then the nodes in the second dimension, and so on.

• Oblivious routing. Packets from a given source to a given destination can follow different
paths available in the topology. For each packet, the path is selected without taking into
account the state of the network, using a selection policy such as random or round-robin.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:7

• Adaptive routing. Like in oblivious routing, packets sent from a given source to a given
destination can follow several paths offered in the topology. However, for each packet, the
path is selected based on the state of the network, usually on the occupancy of the buffers.

In KNS topologies, a deterministic routing algorithm is proposed derived from DOR, called
Hybrid-DOR [28]. The Hybrid-DOR algorithm implements a policy where network dimensions
are crossed in an established order to guarantee deadlock-freedom, as it happens with the DOR al-
gorithm in the direct networks. Specifically, the X dimension is crossed first, then the Y dimension
(i.e., an X-Y routing algorithm). As it can be seen in Figure 1, the number of hops of each path is
independent of the number of end nodes per dimension, and it is always two hops to communicate
whatever pair of end nodes. As mentioned above, Hybrid-DOR provides acceptable performance
for KNS networks. However, the use of oblivious or adaptive routing algorithms has not been ex-
plored yet. In Figure 1, it could be possible for a routing algorithm select between the XY paths (i.e.,
a packet is first routed in the X dimension, then in the Y) and YX paths (i.e., a packet is first routed
in the Y dimension, then in the X). To the best of our knowledge, the benefits of using either obliv-
ious or adaptive routing algorithms in KNS topologies have not been explored yet. Moreover, the
effects of HoL blocking in KNS and direct topologies using source-adaptive or oblivious routing
algorithms are an open issue.

2.3 Solutions to HoL Blocking

High-performance interconnection networks can use a congestion control technique to alleviate
the degradation of network performance derived from congestion. This, for instance, occurs in the
InfiniBand-based networks [17, 19]. Nowadays, the two most popular approaches to congestion
control in HPC systems are injection throttling (i.e., the one used in InfiniBand-based networks)
and queue-based flow-separation. Injection throttling reduces the packet-injection rate at the source
end nodes when the switches detect congestion, and this alleviates the congestion situation after
a while. Although injection throttling does not directly eliminate HoL blocking, this effect disap-
pears once congestion is removed. Moreover, injection throttling is not scalable with network size
as the delay from congestion detection to reaction at the sources grows with the network diam-
eter [14]. By contrast, queue-based flow-separation strategies are based on having at each port a
set of queues (i.e., Virtual Channels (VCs) [9]) to store separately different packet flows, prevent-
ing or reducing the impact of HoL blocking. Hence, queue-based solutions directly deal with HoL
blocking.

Theoretically, the most efficient queue-based solutions are those that dynamically allocate
queues to isolate the packet flows that contribute to congestion (usually referred to as “hot flows”),
so that the HoL blocking that these flows could cause over others (“cold flows”) is prevented. Some
of these solutions, such as the one described for ATLAS [22], identify hot flows based on their fi-
nal destination and assume that congestion originates only at endpoints. Other solutions such as
Regional Explicit Congestion Notification (RECN) [11] and Efficient and cost-effective Congestion-

Control (EcoCC) [14] consider that congestion may originate also at internal points of the net-
work. However, these techniques require additional resources such as mechanisms to detect and
separate hot flows, specific control messages, and Content-Addressable Memories (CAM) to keep
track of congested points at each port. These resources are not supported by current commercial
interconnects.

However, other queue-based solutions map packet flows to queues using a static mapping policy,
independently of the traffic conditions. Although these techniques do not require specific resources
to evaluate and store information about network status, some of them are not an affordable imple-
mentation. For instance, Virtual Output Queues at the network level (VOQnet) [10] uses at each

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:8 P. Yebenes et al.

switch port as many queues as destinations are in the network so that any packet is mapped to the
queue corresponding to its destination. Thus, packets share queues only with other packets ad-
dressed to the same destination. This queuing scheme prevents low- and high-order HoL blocking,
but it is unfeasible due to the high number of queues required per port.

By contrast, other static queuing schemes are far more feasible as they require a reduced number
of queues per port. Among them, Virtual Output Queues at switch level (VOQsw) [4] uses at each
port as many queues as output ports are in the switch so that each incoming packet is mapped to
the queue assigned to its next output port. Hence, VOQsw prevents the low-order HoL blocking,
but not the high-order one. Other similar (although not identical) queuing schemes that partially
reduce HoL blocking are Dynamically Allocated Multi-queues (DAMQs) [32] or Destination-based
Buffer Management (DBBM) [26].

In general, the static queuing schemes mentioned above are not aware of the routing algorithm
and network topology. As a consequence, the reduced set of queues per port is not always ef-
ficiently leveraged to reduce HoL blocking, and the performance of these techniques may drop
in specific topologies when HoL blocking appears. By contrast, other queuing schemes take into
account the network configuration, such as Flow2SL [12] and vFTree [18], which are specially
designed for fat-trees topologies using deterministic routing algorithm [16, 35], to exploit their
characteristics and reduce the HoL blocking more effectively. Similarly, we devised a static queu-
ing scheme specially tailored to KNS topologies using the hybrid-DOR (deterministic) routing al-
gorithm, called Band-based Queuing (BBQ) [34]. Specifically, BBQ reduces HoL blocking in KNS
networks using a static queuing scheme based on a simple policy to map packets to queues at
each switch port. The idea is to virtually divide the KNS topology into several areas (or bands),
and map traffic flows to them so that this reduces HoL blocking. Specifically, at input ports, the
BBQ mapping policy selects the queue to store each incoming packet according to the formula in
Equation (1):

SelectedQueue =
Destination × #Queues

#EndNodes
, (1)

where Destination is the destination of the packet, #Queues is the number of queues that BBQ
configures at each switch port (i.e., the number of queues each port buffer is divided into), and
#EndNodes is the number of end nodes in the network. This queue-selection policy virtually divides
the KNS network into a given number of horizontal bands, each one consisting of one or more
consecutive rows of destinations. Destinations in different rows result in a different SelectedQueue
when they are introduced as a “Destination” in Equation (1). Thus, packets whose destinations are
in different rows are always stored in different queues. As a result, packet flows addressed to
different rows cannot produce HoL blocking to each other.

Although BBQ significantly improves the performance of KNS networks, its effectiveness is
limited by the use of the Hybrid-DOR routing algorithm. We have observed that in KNS networks
using the XY Hybrid-DOR version, the links in the X-dimension may be prematurely congested,
since packets always move first on the X dimension, and then in the Y one. This situation leads
to an unbalanced utilization of the network links and a diminution of the system performance,
even if BBQ is used. Therefore, we think that the performance of KNS topologies can be further
improved if we exploit their path diversity (i.e., the YX paths) using minimal-path routes. This idea
can be extended to direct networks as well. Therefore, to exploit the available routes in KNS and
direct topologies, we will use oblivious or adaptive routing algorithms, combined with a suitable
queuing scheme aware of both the topology and the routing properties.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

11955
高亮文本

11955
高亮文本

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:9

3 OSHA AND SASHA DESCRIPTION

In this section, we propose a new approach to deal with congestion and HoL blocking in KNS and
direct topologies using oblivious and source-adaptive routing. This approach leverages some of
the properties of these topologies and their routing algorithms, such as path diversity and traffic
balancing, to reduce HoL-blocking while preventing deadlocks. First, we detail how to exploit path
diversity to prevent deadlocks by dividing the network resources in two virtual networks (VNs).
Second, we propose Oblivious Solution for Head-of-Line Blocking Avoidance (OSHA) for KNS and
direct networks using oblivious routing, and Source-Adaptive Solution for Head-of-Line Blocking

Avoidance (SASHA) for KNS and direct networks using source-adaptive routing algorithms. OSHA
and SASHA divide the VNs in several queues and apply the same queuing scheme (called DBBQ)
separately to each VN to map traffic flows to the different queues, reducing HoL blocking. Note
that we use two different names (OSHA and SASHA) to distinguish when we apply our approach to
networks using oblivious routing from when we use source-adaptive routing. Although, hereafter,
we refer to these names as “techniques,” they correspond to the same approach for reducing HoL
blocking in KNS and direct networks using oblivious and source-adaptive routing.

3.1 Deadlock-Freedom Provision

As we have just explained, OSHA and SASHA are both based on the same approach to guaran-
tee deadlock-freedom. Specifically, this approach defines two VNs to offer dedicated buffering to
two disjoint set of routes offered by the specific routing algorithm applied to the given network
topology. For instance, Figure 2 shows a 16-node 2D KNS topology, using a single switch in the
indirect subnetwork. In this figure, physical links connecting end-nodes to switches are divided
in two links, to show that the XY and YX paths offered by the Hybrid-DOR routing in the KNS
topology can be associated to two different VNs. Note that the paths offered by the “XY” Hybrid-
DOR routing (i.e., first the links in the X axis are chosen, then those in the Y axis) are depicted by
bold lines colored in blue, and the paths of the “YX” Hybrid-DOR routing are depicted (i.e., first
the links in the Y axis are chosen, then those in the X axis) by dashed lines colored in red.

As it has been mentioned above, the typical routing algorithms for direct networks is the well-
known dimension-order routing (DOR) policy, which restricts the routes a packet can take to one
dimension, then to another dimension (and so on, in the case of more than two dimensions). The
DOR algorithm is deadlock-free as it applies the restrictions to the routes, then preventing cycles
in the channel dependency graph. Based on DOR, the Hybrid-DOR policy for KNS is deadlock free
as well, as it restricts the routes as the DOR algorithm does. However, to leverage the path diversity
of both KNS and direct topologies, and to balance link utilization, OSHA and SASHA work with
some degree of adaptiveness in the topology. Specifically, based on the DOR routing, packets sent
from a given source to a given destination in a two-dimensional (2D) KNS or direct topology can
follow two different routes across the network (see Figure 2):

(1) XY path: The X dimension is crossed first, then the Y dimension.
(2) YX path: The Y dimension is crossed first, then the X dimension.

Note that using XY and YX paths simultaneously introduces cycles in the channel-dependency
graph (CDG) that could lead to deadlocks if no measures are taken to prevent this situation. For
instance, we can consider in Figure 2 that four traffic flows F1, F2, F3, and F4 are generated: F1 is
generated from end node 0 to end node 5, F2 from 1 to 4, F3 from 5 to 0, and F4 from 4 to 1. We
also assume that it is possible to use XY and YX paths and there are not VNs. Therefore, in this
situation a deadlock could appear if F1 uses an XY path, F2 uses a YX path, F3 uses an XY path, and
F4 uses a YX path. Note that this situation could be prevented if we separate in different buffering
resources packets following XY paths from packets following YX paths.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:10 P. Yebenes et al.

Fig. 2. A 16-node 2D-KNS topology where each physical link between an end node and a switch is decom-
posed in two virtual links, creating two virtual networks (VNs) in the topology: the XY-VN and the YX-VN.

In the case of three-dimensional (3D) KNS and direct topologies (e.g., Tori) using the DOR rout-
ing, we could define several types of paths as well: XYZ, XZY, YXZ, YZX, ZXY, and ZYX. Note that
in this case, we would need six VNs to guarantee deadlock prevention, if we follow the approach of
separating types of paths in different VNs. Although other approaches could be used to reduce the
number of required VNs, we decided to limit the adaptiveness degree to two types of paths, since
the number of queues is limited in current network technologies (e.g., InfiniBand-based switches
offer eight VLs). To increase the adaptivity degree optimizing the VNs is left for future work.

Therefore, we assume two VNs and assign to them two disjoint set routes, offered by the routing
algorithm. The VN selected by a packet cannot be changed once that packet is injected in the
network, as we describe in the next section. Thanks to this approach cyclic dependencies are not
possible in the CDG of the KNS and direct topologies using oblivious and source-adaptive routing.
Therefore, OSHA and SASHA prevent deadlocks, while they can reduce the HoL blocking using
two VNs, and several queues per VN, as we explain in Section 3.3.

3.2 Virtual Network Selection

The VN in which a packet is going to be mapped is selected by the source end node based on
the routing algorithm (i.e., oblivious or source-adaptive). As we have described before, this VN
cannot be changed once the packet is injected into the network. In the case of 2D topologies, the
queues of the first VN are used exclusively by packets that follow XY paths, whereas the queues of
the second VN are used exclusively by packets that follow YX paths. In the case of KNS of direct
topologies using more dimensions, we need to select only two type of paths among the available
ones (e.g., XYZ and YXZ).

Hence, a packet following a XY path will never be stored in queues assigned to packets fol-
lowing YX paths (and vice versa). OSHA and SASHA differ in the criterion for the VN selection,
since that criterion depends on the routing algorithm. On the one hand, OSHA uses a round-robin
policy so that packets injected consecutively from a source end node are shuffled between both
VNs. As a consequence, the XY and YN VNs receive the same amount of traffic regardless the
traffic conditions in the network, thereby “proactively” balancing the load of X-dimension and Y-
dimension links. On the other hand, SASHA selects the VN depending on the occupancy of the
output queues of the source end node. In this case, the queue with lower occupancy among those
where the packet could be mapped (according to the queuing scheme) is selected, then the VN
that includes this queue is selected. In this way, SASHA “reactively” balances the utilization of

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:11

Fig. 3. DBBQ divides a 16-node 2D-KNS topology into four horizontal and vertical bands.

both VNs, based on the occupancy at source nodes. It is worth mentioning that SASHA only needs
the information of the occupancy of the queues at source end nodes in order work properly, not
requiring additional information from switches, control messages and notifications to/from the
network.

Note that SASHA can react to congestion in a VN, in contrast with OSHA, which is not aware of
any sign of congestion. For instance, if a VN is congested, OSHA keeps shuffling packets between
both VNs. By contrast, in the same scenario, SASHA stops using the congested VN and would only
use the other one while congestion lasts. However, SASHA requires a mechanism to monitor the
queue occupancy at egress ports of end nodes of the network, as we describe in Section 4.

3.3 HoL Blocking Reduction

As we have explained before, an additional benefit of using two separate VNs is that HoL blocking
cannot happen between two packet flows assigned to different VNs, as these flows would never
share queues. However, HoL blocking is still possible among flows assigned to the same VN. To
reduce this “intra-VN” HoL blocking, OSHA and SASHA divide each VN in several queues, and
use an efficient and suitable queuing scheme, which operates independently at each VN, to map
packets to a specific queue inside the corresponding VN.

Note that we do not restrict the queuing scheme that could be used at each VN, since similar
ideas to those of OSHA and SASHA could be applied to other network topologies. However, to
provide an efficient HoL blocking reduction, we have adapted the BBQ technique (see Section 2.3)
to OSHA and SASHA, since BBQ is a successful queuing scheme for KNS networks. Based on BBQ,
we have proposed a new queuing scheme, called Dynamic Band-based Queuing (DBBQ), which
selects horizontal or vertical bands depending on the VN selected. Figure 3 shows an example of
DBBQ for a 16-node 2D-KNS topology.

Note the total number of queues required per port (n) is the number of queues per port required
by the queuing scheme multiplied by the number of VNs (two in our case). So at each port we
need a number of queues between 0 and n

2 − 1 for the first VN (XY path), whereas queues between
n
2 and n − 1 are used by the second VN (YX path). For instance, in the example of 3, we can use
four queues per port (one per band), so that queues 0 and 1 could be used by the first VN whereas
queues 2 and 3 by the second one. However, more queues can be used per VN to increase the
efficiency in HoL blocking reduction.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:12 P. Yebenes et al.

Fig. 4. Buffer occupancy of switch port #0 in 16-node 2D KNS network using BBQ (left) and DBBQ (right).

Although we could use BBQ to reduce HoL blocking inside each VN, it does not fit them opti-
mally, since it was devised considering the use of the deterministic “XY” Hybrid-DOR routing. In-
deed, as explained in Section 2.3, BBQ efficiency is derived from the fact that packets traversing the
same horizontal band but are addressed to different bands do not share queues, so that HoL block-
ing is prevented among them. However, when YX paths are used by oblivious or source-adaptive
routing algorithms, packets traversing the same horizontal band are already in their destination
band. Thus, if we use BBQ in this case, all of these packets will be stored in the same queue, the
remaining queues being wasted. Figure 4(a) shows this problem. As we can see, the mapping per-
formed by BBQ is unfortunate, and all the packets are mapped to the same band (i.e., to the same
queue).

To overcome this problem, we propose an alternative queuing scheme that we call Dynamic

Band-based Queuing (DBBQ). Basically, DBBQ divides virtually and dynamically the network into
horizontal or vertical bands depending on the VN used to send the packet (first or second VN):
in the case of the VN #1 the bands are horizontal like in Figure 4(a), but vertical bands are used
in the case of the VN #2, like in Figure 4(b). Note that for 3D KNS topologies, we assume that
bands in 2D topologies transform into horizontal or vertical planes. Like in BBQ, each band (or
plane) corresponds to an exclusive queue where the packets addressed to this band (or plane) are
mapped. Note that, in 3D KNS or direct topologies, packets following XYZ paths are mapped to
VN #1, then to queues corresponding to horizontal bands (or planes), and packets following YXZ
paths are mapped to VN #2, then to queues corresponding to vertical bands (or planes). In this
way, we do not waste queues when packets are mapped to VN #2 (YXZ paths), as in this case
packets traversing a vertical band (or plane), but addressed to different bands (or planes), never
share queues. Figure 4(b) shows the mapping performed by DBBQ using VN #2. As can be seen,
this mapping policy solves the problems of BBQ (see Figure 4(a)). Note that in the case of 3D KNS
and direct topologies, we assume the use of two VNs, as well, therefore the routes in the network
are limited to XYZ and YXZ paths.

DBBQ uses two different formulae to calculate the queue where each packet is stored based on
the XY and YZ paths for 2D topologies, and the XYZ and YXZ paths for 3D topologies. Specifically,
the formula used by DBBQ when a packet is sent to VN #1 is shown in Equation (2), which is similar
to the one used by BBQ (see Equation (1)), but now the #QueuesPerVN parameter represents the
number of queues configured for each VN, instead of the total number of queues per port. However,
the formula used for packets sent to VN #2 divides the network into vertical bands. We show this
formula in Equation (3), where Destination is the destination of the packet, #QueuesPerVN is the
number of queues configured for each VN, and #NodesPerDim is the number of end nodes in each
dimension:

SelectedQueueVN 1 =
Destination × #QueuesPerVN

#EndNodes
, (2)

SelectedQueueVN 2 =
(Destination % #NodesPerDim) × #QueuesPerVN

#NodesPerDim
. (3)

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:13

Note that the result of both formulae is a number of queue relative to the number of queues
assigned to each VN, i.e., not relative to the total number of queues per port.

4 INFINIBAND IMPLEMENTATION

In this section, we provide some details to implement OSHA and SASHA in InfiniBand-based net-
works. The InfiniBand Architecture (IBA) offers flexibility to build different network topologies
and implement different routing algorithms. We assume that the network interfaces of the last
generation of IBA hardware can re-route packets in the end node cards without any software par-
ticipation, as vSwitch and offloading capabilities have been included (see Section 2.1). The vSwitch
functionality is in charge of routing packets from the first port to the second in two-port IBA host
channel adapters (HCAs). In the case of 3D KNS topologies, we would need offloading functional-
ity to perform the communication between two HCAs through PCIe, without involving the CPU.
As far as we know, a similar offloading capability is available in current IBA hardware in the tech-
nology GPUdirect, which communicates GPU devices and HCAs without the CPU (nor software)
intervention.

In IBA, the routing algorithm is implemented by the Subnet Manager (SM), a software entity
that discovers the network topology, assigns local identifiers (LIDs) to all the end nodes, and pop-
ulates the switch routing tables based on the selected routing algorithm. Besides, IBA considers
that HCAs at end nodes can be connected to the network through different ports, so that the SM
assigns LIDs to the ports of every HCA. Indeed, the addressing of the same end node by means
different LIDs allows that several can be configured in the network to reach the same end node.
This functionality is required to implement either OSHA or SASHA in IBA. Furthermore, the SM
needs to discover XY and YX paths (XYZ and YXZ paths in the case of 3D topologies) to imple-
ment the oblivious and source-adaptive routing policies, and the Hybrid-DOR routing. Note that
Hybrid-DOR is based on the classic DOR routing algorithm for direct networks, which is already
implemented in current versions of the SM, such as OpenSM (included in the IBA software stack
OFS). Therefore, it would be easy to implement both XY and YX Hybrid-DOR by doing some
changes in OpenSM. Note that using one or another routing depends on the VN selection, and we
still need to find a way for mapping traffic flow to queues inside each VN.

In that sense, OSHA and SASHA require to manage the buffers at switch ports to implement the
respective queues of the two separate VNs. The buffering at the ports in IBA devices is channeled
through Virtual Lanes (VLs), where each VL has its flow control. VLs are assigned to packets
based on their Service Level (SL), which is placed in the packet header before their injection in the
network. The SL cannot be modified once the packet is injected into the network. As the packet
traverses the fabric, the SL determines which VL is used to store the packet in the next visited port.
In the switches, we need to configure the correspondence between SL and VLs. For this purpose,
each IBA device port has an SL-to-VL mapping table, which is consulted each time an incoming
packet needs to know the VL in where it is stored based on the SL at its header. We have defined
the criterion SL=VL to map packets to VL based on the SL. However, it is possible for the packet
that traverses the network to modify the VL it is stored. This functionality is available in some
strategies [30] that differ from us in the way the SL-to-VL tables are filled in. It is important to
mention that IBA defines a maximum of 16 different SLs and VLs, although some manufacturers,
such as Mellanox, build IBA devices supporting 16 SLs but only 9 VLs. As one of these VLs is
reserved for control packets, a maximum of 8 VLs per port is available in total, so that, to implement
OSHA and SASHA, each VN would consist of a maximum of 4 VLs. Note that a specific VL would
belong to only one VN so that packets assigned to different VNs would never share a VL.

Besides, as OSHA and SASHA need to know in advance the VN and the VL where a packet must
be stored, we need to implement in OpenSM a method to calculate first the VN, then the VL for

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:14 P. Yebenes et al.

Table 1. Evaluated Network Topology Configurations

Topology
#Endnodes

(also Routers)
#Switches (Indirect

networks)
#Switch ports (Endnodes

per dimension)

1 2D-KNS (48-ary 2-direct 1-indirect) 2,304 96 48

2 3D-KNS (24-ary 3-direct 1-indirect) 13,824 1,728 24

3 2D-Torus (48 × 48) 2,304 — —

4 3D-Torus (24 × 24 × 48) 13,824 — —

every packet prior their injection. As the OpenSM is a centralized process in an end node or a
switch in the network, the decision to select the VN can be delegated to the connection manager
(CM), available at each HCA. As mentioned in Section 3, OSHA and SASHA use different criteria
to select the VN. On the one hand, OSHA (oblivious routing approach) uses a round-robin policy,
whereby the CM has to keep track of the VN selected for the last packet injected from a given
source, then selecting the other VN for the next packet to be injected from that source. On the
other hand, SASHA (source adaptive routing approach) would require to check the occupancy of
the VLs at the end node, where a packet could be mapped depending on the VN, selecting the VN
corresponding to the VL with lower occupancy. This occupancy can be estimated in runtime look-
ing at the end-node performance counters, which store monitoring data regarding the status of the
inbound and outbound traffic at the end node ports. We propose to use two port counters: interval

that measures the number of seconds per interval, and PortVLXmitWait that measures the number
of hardware cycles in the last interval, which the VL could not send data due to insufficient credits
(i.e., contention). Individually, SASHA could configure the CM to compare the PortVLXmitWait

values for all the VLs at the end-nodes network adapters, then selecting the VL with the lowest
PortVLXmitWait value and the VN that VL belongs to. Moreover, a small interval value should be
considered to react quickly to congestion.

Note that packets must be mapped to the queues (i.e., VLs) of each VN according to either
Equations (2) or (3), described in Section 3.3. Therefore, OpenSM needs to calculate the SL of each
packet before their injection in the network, based on those formulae. Precisely, the application of
the DBBQ formulae (Equations (2) and (3)) in an IBA context to compute the packet SL (and VL)
would require to define an ordering to the end nodes of the topology (from 0 to N − 1, being N
the number of end nodes), so that LIDs can be mapped to this ordering. In this way, it would be
easy to apply and implement the above formulae in OpenSM.

5 EVALUATION

In this section, OSHA and SASHA are evaluated based on simulation results obtained in different
network configurations where different traffic scenarios are modeled. For this evaluation, we have
used a custom-made simulator [33] based on the OMNeT++ framework. The simulation tool is a
discrete-event system simulator that accurately models interconnection networks at packet level.
This means that we model the network components, such as network interfaces and switches
components (i.e., buffers, crossbars) and links with high granularity. For instance, we are able to
generate a message in the network interfaces, which is later split into packets, and then injected
one by one in the network. Also, the timing is modeled so that events machine triggers the network
behavior conveniently. Note that the OMNeT++ framework offers many interesting features such
as a simulation kernel, a graphical interface (GUI), and an analysis tool, and it is widely used by
the community, due to its accuracy, when modeling link transfers, buffers, and so on.

Specifically, we have modeled the configurations presented in Table 1 for KNS and Tori topolo-
gies. For the sake of clarity, the Tori direct topologies are included in the experiments to show other

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:15

environments where the proposed queuing schemes can also operate satisfactorily. Note that each
configuration has a different size, as we also want to test the OSHA and SASHA scalability.

For all the network configurations, we assume serial full-duplex pipelined links with 12.5GB/s
(i.e., 100Gbps) of link bandwidth, 6ns of link propagation delay (i.e., a length of 1.2m and a delay
of 5ns/m), both for switch-to-switch and node-to-switch links. These values are similar to those
used in the InfiniBand specification. Regarding the switch model, we assume an input-queued
(IQ) switch architecture, i.e., buffers are present only at switch input ports. We have modeled
switches with 24 and 48 ports, as these are common configurations in several commercial switches.
Similarly, in all the cases the switching technique is Virtual Cut-through, the flow-control policy
is credit-based, and packet MTU size is 4KB. The switch buffers size is 128KB (i.e., 32 packets can
be stored), and they are organized in queues (or virtual channels, VCs) where queuing schemes
can be applied.

Furthermore, the IQ-switch architecture can be improved to natively reduce HoL blocking. This
can be done by implementing virtual output queues (VOQs) through demultiplexed accesses to
the crossbar. The use of VOQs requires that each input port owns a separate entry at buffers
to the crossbar per output port in the switch. In this way several packets from the same queue
can be simultaneously forwarded if they are addressed to different output ports, thus low-order
HoL blocking is completely prevented. Note that VOQs are orthogonal to queues, and indeed the
flow-control policy is applied only at queue-level. Hence, the combination of VOQs and queuing
schemes increase the HoL blocking reduction. To analyze the performance of OSHA and SASHA
proposals, we compare them to other state-of-the-art solutions for HoL blocking reduction. In
more detail, we have modeled the following schemes:

• Single Queue (1VC). In this scheme, there is a single queue per buffer and deterministic
routing is used. This configuration represents the situation when no queuing scheme is
used for HoL blocking reduction. We use this configuration to measure the real impact of
HoL blocking on network performance, when we do not have any mechanism to reduce
congestion effects.

• Band-based Queuing (BBQ-4VC). This scheme is used in KNS and direct topologies when
deterministic XY DOR routing is used (see Section 2.3). We have modeled BBQ with four
queues (or VCs) per buffer. It is used to show the best performance obtained in networks
using distributed routing together with HoL blocking prevention. Note that BBQ cannot be
combined with oblivious and source-adaptive routing, since the use of alternative routes
without using VNs incurs in cycles in the channel dependency graph, then potential dead-
locks may appear.

• Oblivious Solution for Head-of-line Blocking Avoidance (OSHA). We have modeled
OSHA with two VNs, and two different configurations for the number of queues used per
VN. Specifically, OSHA-2VC uses one queue per VN (i.e., two VCs are used in total), and
OSHA-4VC-DBBQ uses two queues per VN (i.e., four VCs are used in total) to reduce HoL
blocking. In this latter case, DBBQ is used as the queuing scheme the VNs. The VN to inject
a packet is selected according to an oblivious (round-robin) policy (see Section 3).

• Source-Adaptive Solution for Head-of-Line Blocking Avoidance (SASHA). SASHA is
also modeled with two VNs. SASHA-2VC uses two queues per VN (i.e., two VCs in total),
and SASHA-4VC-DBBQ also uses two VNs and two queues per VN (i.e., four VCs in total).
The VN to inject a packet is selected according to a source-adaptive criterion (see Section 3),
so that the VN is selected in the source end node according to the lower occupancy.

Finally, we assume that end nodes are connected to switches through network interfaces, mod-
eled with as many admittance queues as end nodes are in the network. Each newly generated

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:16 P. Yebenes et al.

Table 2. Zipf Probability Distribution (in %) for the First Ten Preferred
Destinations (i = 1 to 10) for a 64-node Network

s 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1 21.1 10.5 7.0 5.3 4.2 3.5 3.0 2.6 2.3 2.1
2 61.4 15.3 6.8 3.8 2.5 1.7 1.3 1.0 0.8 0.6
3 83.2 10.4 3.1 1.3 0.7 0.4 0.2 0.2 0.1 0.1

packet is stored in the admittance queue assigned to its destination so that HoL blocking is pre-
vented at traffic-generation level. Packets are transferred from admittance queues to injection
queues, which are organized according to the same scheme used in the switches. Injection queues
are flow-controlled from the switch input ports at link-level.

5.1 Traffic Modeling

Regarding traffic modeling in simulation experiments, we have used several communications
patterns being representative in current HPC applications. Indeed, the threads of a parallel
application tend to use preferred destinations due to the characteristics of the common collective-
communication schemes. For that reason, as we want to use a more realistic traffic distribution,
we have modeled the Zipf traffic distribution [7]. This traffic model is based on Zipf’s law, and it
is suitable for the evaluation of high-performance interconnects [25].

Specifically, Zipf’s law is applied to interconnection networks as a traffic distribution by using
Expression (4), where N is the number of end nodes in the network, s is a positive real number that
indicates the distribution order, and PN (i) is the probability that a packet is addressed to the i’th
most-preferred destination, the value of i ranging from 1 to N . That is, Equation (4) establishes a
ranking of destinations according to the probability of being the destination of a packet:

PN (i) =
i−s

∑N
j=1 j

−s
. (4)

Table 2 shows an example of the computed Zipf probability distribution for the first tenth pre-
ferred destinations in a 64-node network topology, when the value of s is 1, 2, or 3. Note that the
value of the s parameter affects strongly to the probability obtained. If the value of s is zero, then
Zipf behaves as the uniform one; the higher the value of s parameter, the higher the probability of
the packet being sent to the first destinations in the ranking. Note also that Equation (4) does not
assign a probability to a specific end node, but to a position in the ranking, i.e., the ith preferred
destination could be whatever end node in the network. Therefore, it is necessary to associate each
value of i (so each value of PN (i)) to the identifier of an actual end node. In our experiments, we
have made this association randomly, for each source of packets, so that each source has its own,
different ranking of preferred destination end nodes.

The problem with the Zipf traffic is that, with high values of s , it behaves as a many-to-one traffic
pattern where all the end nodes send traffic to a few destinations. Then, congestion situations do
not generate a significant amount of HoL blocking to measure the efficiency of queuing schemes.
For this reason, we have modeled hot-spot traffic scenarios intended to represent extreme scenar-
ios with intense traffic being suddenly generated from many sources towards the same (one or
more) preferred destinations (i.e., hot-spot destinations). Hence, one or several congestion trees
are created whose roots are located at the hot-spot destinations. In these situations, congestion
trees rapidly spread throughout the network affecting traffic flows that do not contribute to con-
gestion, thus suffering HoL blocking. Specifically, in hot-spot traffic scenarios, a percentage of

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:17

sources (in our case 75% of source end nodes) generate traffic flows with a uniform (i.e., random)
distribution of destinations, while the remaining sources (in our case 25%) generate a large traffic
burst addressed to a single hot-spot destination.

In all experiments where Zipf and hot-spot traffic patterns are used, we measure as performance
metrics the average packet latency in μs as a function of the accepted traffic normalized against the
maximum bandwidth of the network links. The accepted-traffic metric measures the amount of
traffic that the network can absorb an deliver, and it depends on the traffic generation rate. This
traffic rate is incremental, so that we increase that from 0% of the link speed to 100%, and simulate
11 load points. For each traffic load point, the network warms up for 1ms. After the warming
period, the performance metrics are recorded in a steady state during 2ms. Therefore, we simulate
3ms of time for each load point.

Finally, we have used real-application traces from the HPCC (High-performance Computing

Challenge) benchmark [1], obtained with the VEF framework [5]. HPCC is a suite of MPI-based
tests widely used to measure the performance of processor, memory subsystem and the intercon-
nection network of HPC clusters We have chosen the PTRANS test from HPCC, which generates
a moderate load in the network. PTRANS servers to analyze if the observed behavior with syn-
thetic traffic also happens with trace-based traffic. Note that we have used traces obtained for 576
MPI tasks, so that we need four traces in a 2,304-node network, such as those modeled in the net-
work configurations #1 and #3 in Table 1. The performance metric we have obtained from traces
execution is the the execution time (in milliseconds).

5.2 Zipf Traffic Results

Figure 5 shows performance results for 2304-node 2D-KNS topologies (Network Configuration #1
of Table 1) when Zipf traffic is generated (s = 1 and s = 3).

Note that switches are configured with and without VOQs, so that in the former case low-order
HoL blocking is natively prevented. 1-VC configuration (i.e., a single VC per switch port) always
obtains the worst results as it is unable to deal with HoL blocking. BBQ-4VC always achieves the
best results, since it fits the network and routing properties. When Zipf is configured with s = 1,
it generates an all-to-all communication pattern where the 1st destination (see Table 2) receives a
higher percentage of traffic, but all the remainder end nodes also receive a representative amount
of traffic. Therefore, the traffic pattern generates a weak congestion tree addressed to the 1st des-
tination, while the background traffic addressed to the remainder destinations follows a uniform
(i.e., random distribution). For this reason, OSHA-2VC and SASHA-2VC suffer from the high-order
HoL blocking generated by the traffic pattern, as they only have two VNs and one queue per VN.
OSHA-4VC outperforms OSHA-2VC and SASHA-2VC, but its performance is still far from that of
BBQ-4VC (i.e., deterministic routing), because oblivious routing spreads HoL blocking in the avail-
able VCs. SASHA-4VC behaves like BBQ-4VC, because source-adaptive routing is able to mitigate
moderate congestion situations. By contrast, Zipf configured with s = 3 sends most of the traffic
to the 1st destination, generating a many-to-one traffic pattern, while the background traffic is re-
duced, HoL blocking appearance is minimal. Hence, we do not see significant variations between
1VC (the worst case) and BBQ-4VC (the best case).

Similarly, Figure 6 shows performance results for 13,824-node 3D-KNS topologies (Network
Configuration #2 of Table 1). Note that the series have virtually identical shape and values than
in the previous figure; thus, we can draw similar conclusions as before, regardless the size of the
topology is 6× bigger. It is worth mentioning that 3D-KNS topologies increase path diversity, and
this favors the adaptive routing algorithms that spread better the traffic in 3D-KNS topologies than
in two 2D KNS. For this reason, SASHA-4VC-DBBQ achieves the best results in this case, while
SASHA-2VC performance equals that of BBQ-4VC using half the VCs or queues.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:18 P. Yebenes et al.

Fig. 5. Average packet latency (microseconds) versus normalized accepted traffic for 2,304-node 2D-KNS
topologies (Network Configuration #1 of Table 1) with and without VOQs, when Zipf traffic is generated
(s = 1 and s = 3).

Figure 7 shows performance results for 2,304-node 2D-Torus topologies (Network Configura-
tion #3 of Table 1). As we can see, the saturation point in Tori topologies is significantly lower
compared to KNS topologies, because the bisection bandwidth of KNS topologies is considerably
higher compared to Tori. Moreover, Tori topologies are proposed to deal with traffic patterns of
applications, which mostly communicate neighbor end nodes. Hence, Zipf traffic that communi-
cates all-to-all when s = 1 and many-to-one when s = 3 spoils the performance of Tori topologies,
regardless of the used queuing schemes and routing policy.

However, in Figure 7, we can observe that differences among techniques are bigger when Zipf
traffic is configured with s = 3, instead of what happened in KNS topologies. This means that
congestion trees in Tori are more dramatic when the traffic pattern is many-to-one, and queuing
schemes are required. As network diameter is also bigger, then path diversity is leveraged by the
adaptive and oblivious routing algorithm better than in the deterministic case. For this reason,
SASHA and OSHA (configured with two and four queues) outperform BBQ-4VC in Tori topologies.
It is important to mention that switches using VOQs do not achieve a significant performance
increment, compared to switches without VOQs, because congestion dynamics in Tori lead to
aggressive congestion trees that spread throughout the entire network generating high-order HoL
blocking mostly. Thus, VOQs become useless in these scenarios.

Figure 8 shows performance results for 13,824-node 3D-Torus topologies (Network Configu-
ration #4 of Table 1). As these networks use three dimensions, the path diversity and network
bisection bandwidth increase compared to 2D Tori. Note that the number of end nodes in this

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:19

Fig. 6. Average packet latency (microseconds) versus normalized accepted traffic for 13,824-node 3D-KNS
topologies (Network Configuration #2 of Table 1) with and without VOQs, when Zipf traffic is generated
(s = 1 and s = 3).

figure is 6× higher than the previous figure, and the performance results are similar than before,
except for BBQ-4VC that achieves the best results favored by the increased bisection bandwidth.

As a conclusion, OSHA and SASHA achieve reasonably good performance results when Zipf
traffic is generated in the network. Next section shows performance results when hot-spot scenar-
ios creating stronger congestion situations are generated in the network.

5.3 Hot-Spot Traffic Results

To understand the following results, we need to detail how we set up the simulation experiments
using hot-spot traffic. In this traffic pattern 25% of the end nodes generate hot-spot traffic at a
given rate of its link bandwidth limit, which corresponds to the the load point in the network.2

Meanwhile, 75% of the end nodes generate traffic addressed to a uniform (i.e., random) distribution
of destinations. As described in Section 5.1, each load point in the plots corresponds to 3ms of
simulation time, where 1ms is devoted to warm-up the network (i.e., load it with enough traffic to
perform accurate performance metrics) and 2ms are used to measure statistics. After the warm-up
period, we mark a set of packets generated to random destinations to measure the packet latency
when they arrive at their destinations.

Figure 9 shows performance results for 2D- and 3D-KNS networks (i.e., network Configura-
tions #1 and #2 of Table 1) when we generate the hot-spot traffic scenario described in Section 5.1.

2Note that we generate 11 points with different traffic generation load ranging from 0% to 100% of link bandwidth.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:20 P. Yebenes et al.

Fig. 7. Average packet latency (microseconds) versus normalized accepted traffic for 2,304-node 2D-Torus
topologies (Network Configuration #3 of Table 1) with and without VOQs, when Zipf traffic is generated
(s = 1 and s = 3).

As we can see, in Figure 9(a) all the queuing schemes but BBQ-4VC and SASHA-2VC-DBBQ suffer
from the effects of internal contention at switches near the hot-spot end node (low-order HoL
blocking). In particular, SASHA-4VC-DBBQ balances better the traffic through alternative routes
to mitigate this problem, as the source-adaptive routing realizes of congested routes at small load
rates, while oblivious and deterministic routings do not. The strange effect with latency at small
loads occurs because the HoL blocking impacts more on these techniques when the traffic load is
moderate. The same happens to SASHA-4VC-DBBQ when VOQs are used. When VOQs are used
(Figure 9(b)) the internal contention at switches disappears (as well as low-order HoL blocking);
thus, the previous effects with small load rates in the network disappear. In these scenarios, 1VC
and OSHA are not able to deal with congestion effects. In the case of 1VC, a single VC or queue is
not enough to deal with HoL blocking, regardless of the routing algorithm (in this case 1VC uses
deterministic routing). In the case of OSHA, oblivious routing ends up spreading the congestion
throughout all the paths and queues of the network.

However, SASHA-4VC-DBBQ performs efficiently (at the level of BBQ-4VC), and the network
can absorb traffic until 60% of traffic load.3 Note that the network latency does not augment after
60%, since the length of the Y-axes is in the order of microseconds (μs), as we want to show the
effects of congestion in queuing schemes other than BBQ-4VC and SASHA-4VC-DBBQ. When the

3Note that the maximum load that the network can absorb is 75% that coincides with the maximum generation rate of 75%

of end nodes generating random traffic.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:21

Fig. 8. Average packet latency (microseconds) versus normalized accepted traffic for 13,824-node 3D-Torus
topologies (Network Configuration #4 of Table 1) with and without VOQs, when Zipf traffic is generated
(s = 1 and s = 3).

KNS size increases to 13,824 end nodes (Figures 9(c) and 9(d)), the congestion problems augment as
well. Again, BBQ-4VC and SASHA-4VC-DBBQ deal with HoL blocking effects in a proper manner
when deterministic and source-adaptive routing algorithms are used, respectively.

Figure 10 shows performance results for 2D- and 3D-Tori (network Configurations #3 and #4
of Table 1) when we generate hot-spot traffic. 1VC and OSHA behave like in KNS topologies.
However, there is a difference in Tori networks, since OSHA-4VC-DBBQ deals better with HoL
blocking, close to the performance of SASHA-4VC-DBBQ. As Tori topologies have longer diameter,
they avoid congestion spreading quickly. This effect favors the oblivious routing, as it helps to
randomize traffic routes when network traffic load is not too high. Note that the traffic load the
network can absorb increases when 3D-Tori are used regardless the network size, since the path
diversity also augments with the third dimension. BBQ-4VC achieves the best results in 3D-Tori,
due to the benefits of the routing algorithm. SASHA-4VC-DBBQ also achieves good results, close
to those of BBQ-4VC and improving OSHA-4VC-DBBQ. As we mentioned before, adaptive and
oblivious routing algorithm can be counterproductive when strong congestion scenarios appear
[29], since it is dramatic for the network performance to spread congestion trees by the effect of
routing algorithms.

5.4 Real-Traffic Traces Results

Figure 11 shows the execution-time results (in milliseconds) for 2D-Tori and KNS topologies (i.e.,
network Configurations #1 and #3 of Table 1) when the PTRANS trace-based traffic has been
generated.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:22 P. Yebenes et al.

Fig. 9. Average packet latency (microseconds) versus normalized accepted traffic for network Configurations
#1 and #2 of Table 1 with and without VOQs, when Hot-spot traffic is generated.

As we have mentioned in Section 5.1, the metric analyzed in this case is the execution time of
the application (in milliseconds). Note that the results obtained for all the network configurations
are very similar, because the PTRANS generates a moderate load, which does not saturate the KNS
topologies. However, we observe a similar trend to that shown in Figures 5 and 9, when a moderate
load is generated (i.e., between 30% and 60% of traffic load). By contrast, in 2D-Tori topologies (with
and without VOQs) the traffic load generates contention due to the smaller bisection bandwidth. In
these scenarios, SASHA improves the execution time significantly. Another important observation
is that 2D-KNS topologies obtain around 520ms of execution time, while 2D-Tori networks obtain
1,200ms when SASHA is used.

5.5 Area and Energy Consumption Considerations

In this section, we discuss the area and energy overhead of switch buffers when several VCs are
used for HoL blocking reduction. We have used the CACTI tool v7.0 [27] using its SRAM modeling.
CACTI is an analytic tool that takes a set of cache/memory parameters as input and calculates its
access time, power, cycle time, and area. We assume 128KB SRAM memories (block size is 64 bytes)
using a 22nm technology mode, and a link speed equal to 100Gbps (i.e., 12.5GB/s). By means of the
CACTI tool, we obtained that the SRAM area of is 0.26mm2, and the power consumption, which
is determined by the total dynamic read energy/access, is equal to 0.09nJ. Note that the switch
organization based on VOQs may use stacked buffers connected to several stacked crossbars. We
have omitted this study, since the specific details of VOQ-based switches are not available, as
far as we know. We think that the area and energy results obtained with CACTI are reasonable,
compared with recently published results from the industry [31]. Note that the number VCs used

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:23

Fig. 10. Average packet latency (microseconds) versus normalized accepted traffic for network Configura-
tions #3 and #4 of Table 1 with and without VOQs, when Hot-Spot traffic is generated.

per switch depends on the network hardware features, since the buffer size is fixed, and the VCs
required by OSHA and SASHA techniques depends on those offered by the hardware. Finally, note
that a thorough study of the power consumption when different traffic patterns are executed in
the network is expected as future work.

6 CONCLUSIONS

In this article, we have proposed a new approach to deal with HoL blocking in KNS and direct
network topologies using oblivious and source-adaptive routing. We configure the network to use
two VNs offering independent buffer space to store packets routed through the multiple routes
offered by the routing algorithms. The use of two VNs guarantees that no deadlocks appear. Each
VN needs to use several queues to separate packets, thus reducing HoL blocking. As our approach is
valid for either oblivious or source-adaptive routing, we refer to it as OSHA (Oblivious Solution for

Head-of-Line Blocking Avoidance) and SASHA (Source-Adaptive Solution for Head-of-Line Blocking

Avoidance), based on the routing. OSHA and SASHA use a new queuing scheme at each VN, called
Dynamic Band-based Queuing (DBBQ), which maps traffic flows to the available queues, so that
HoL blocking is reduced. We have evaluated OSHA and SASHA by means of extensive simulation
experiments, modeling KNS and direct networks up to 13K end-nodes, under synthetic (Zipf and
hot-spot) and trace-based traffic patterns. In the light of the obtained results, we can conclude that
OSHA and SASHA deal efficiently with HoL blocking, requiring a reduced set of queues, when
we use oblivious or source-adaptive routing in KNS and direct networks, regardless the network

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

17:24 P. Yebenes et al.

Fig. 11. Execution time for network Configurations #1 and #3 of Table 1 with and without VOQs, when the
PTRANS traces are used.

size. The proposed solutions are easy to implement in real products, as they do not introduce extra
overhead.

REFERENCES

[1] M. A. Heroux and J. Dongarra. 2013. Toward a New Metric for Ranking High Performance Computing Systems.

SAND2013 - 4744.

[2] Y. Ajima, T. Inoue, S. Hiramoto, Y. Takagi, and T. Shimizu. 2012. The Tofu interconnect. IEEE Micro 32, 1 (Jan. 2012),

21–31. DOI:https://doi.org/10.1109/MM.2011.98

[3] R. Alverson, D. Roweth, and L. Kaplan. 2010. The Gemini system interconnect. In Proceedings of the 18th IEEE Sym-

posium on High Performance Interconnects. 83–87. DOI:https://doi.org/10.1109/HOTI.2010.23

[4] T. Anderson, S. Owicki, J. Saxe, and C. Thacker. 1993. High-speed switch scheduling for local-area networks. ACM

Trans. Comput. Syst. 11, 4 (Nov. 1993), 319–352.

[5] F. J. Andujar, J. A. Villar, F. J. Alfaro, J. L. Sanchez, and J. Escudero-Sahuquillo. 2016. An open-source family of tools

to reproduce MPI-based workloads in interconnection network simulators. J. Supercomput. 72, 12 (2016), 4601–4628.

DOI:https://doi.org/10.1007/s11227-016-1757-0

[6] M. Besta and T. Hoefler. 2014. Slim fly: A cost effective low-diameter network topology. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking, Storage and Analysis. 348–359. DOI:https://

doi.org/10.1109/SC.2014.34

[7] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. 1999. Web caching and Zipf-like distributions: Evidence and

implications. In Proceedings of the 18th Annual Joint Conference of the IEEE Computer and Communications Societies,

Vol. 1. 126–134.

[8] C. Camarero, C. Martínez, E. Vallejo, and R. Beivide. 2017. Projective networks: Topologies for large parallel com-

puter systems. IEEE Trans. Parallel Distrib. Syst. 28, 7 (July 2017), 2003–2016. DOI:https://doi.org/10.1109/TPDS.2016.

2635640

[9] W. J. Dally. 1992. Virtual-channel flow control. IEEE Trans. Parallel Distrib. Syst. 3, 2 (1992), 194–205. DOI:https://

doi.org/10.1109/71.127260

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

https://doi.org/10.1109/MM.2011.98
https://doi.org/10.1109/HOTI.2010.23
https://doi.org/10.1007/s11227-016-1757-0
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/TPDS.2016.2635640
https://doi.org/10.1109/TPDS.2016.2635640
https://doi.org/10.1109/71.127260
https://doi.org/10.1109/71.127260

Combining Source-adaptive and Oblivious Routing with Congestion Control 17:25

[10] W. J. Dally, P. Carvey, and L. Dennison. 1998. Architecture of the Avici terabit switch/router. In Proceedings of the 6th

IEEE Symposium on High-Performance Interconnects (Hot Interconnects’98). 41–50.

[11] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo. 2005. A new scalable and cost-effective congestion

management strategy for lossless multistage interconnection networks. In Proceedings of the 11th International Sym-

posium on High-Performance Computer Architecture (HPCA’05). 108–119. DOI:https://doi.org/10.1109/HPCA.2005.1

[12] J. Escudero-Sahuquillo, P. J. Garcia, F. J. Quiles, S.-A. Reinemo, T. Skeie, O. Lysne, and J. Duato. 2014. A new pro-

posal to deal with congestion in InfiniBand-based fat-trees. J. Parallel Distrib. Comput. 74, 1 (2014), 1802–1819. DOI:
https://doi.org/10.1016/j.jpdc.2013.09.002

[13] J. Escudero-Sahuquillo, Pedro J. Garcia, Francisco J. Quiles, Jose Flich, and Jose Duato. 2013. An effective and feasi-

ble congestion management technique for high-performance MINs with tag-based distributed routing. IEEE Trans.

Parallel Distrib. Syst. 24, 10 (2013), 1918–1929. DOI:https://doi.org/10.1109/TPDS.2012.303

[14] J. Escudero-Sahuquillo, E. G. Gran, P. J. Garcia-Garcia, J. Flich, T. Skeie, O. Lysne, F. J. Quiles, and J. Duato. 2015.

Efficient and cost-effective hybrid congestion control for HPC interconnection networks. IEEE Trans. Parallel Distrib.

Syst. 26, 1 (2015), 107–119. DOI:https://doi.org/10.1109/TPDS.2014.2307851

[15] P. J. Garcia, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and F. Naven. 2005. Dynamic evolution of congestion trees: Anal-

ysis and impact on switch architecture. In Proceedings of the International Conference on High Performance Embedded

Architectures and Compilers. 266–285.

[16] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and J. Duato. 2007. Deterministic versus adaptive routing in fat-trees.

In Proceedings of the Communication Architecture for Clusters Workshop (CAC’07) in Conjunction with the IEEE Inter-

national Parallel & Distributed Processing Symposium (IPDPS’07). 235.

[17] E. G. Gran, M. Eimot, S. Reinemo, T. Skeie, O. Lysne, L. P. Huse, and G. Shainer. 2010. First experiences with congestion

control in InfiniBand hardware. In Proceedings of the IEEE International Symposium on Parallel Distributed Processing

(IPDPS’10). 1–12. DOI:https://doi.org/10.1109/IPDPS.2010.5470419

[18] W. L. Guay, B. Bogdanski, S.-A. Reinemo, O. Lysne, and T. Skeie. 2011. vFtree—A fat-tree routing algorithm using vir-

tual lanes to alleviate congestion. In Proceedings of the IEEE International Parallel & Distributed Processing Symposium

(IPDPS’11). 197–208.

[19] M. Gusat, D. Craddock, W. Denzel, T. Engbersen, N. Ni, G. Pfister, W. Rooney, and J. Duato. 2005. Congestion control

in InfiniBand networks. In Proceedings of the 13th Symposium on High Performance Interconnects (HOTI’05). 158–159.

DOI:https://doi.org/10.1109/CONECT.2005.14

[20] M. Jurczyk and T. Schwederski. 1996. Phenomenon of higher order head-of-line blocking in multistage interconnec-

tion networks under nonuniform traffic patterns. IEICE Trans. Info. Syst. E79-D, 8 (Aug. 1996), 1124–1129.

[21] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. 1987. Input versus output queuing on a space-division packet switch.

IEEE Trans. Commun. 35 (1987), 1347–1356.

[22] M. Katevenis, D. Serpanos, and E. Spyridakis. 1998. Credit-flow-controlled ATM for MP interconnection: The ATLAS

I single-chip ATM switch. In Proceedings of the 4th International Symposium on High-Performance Computer Architec-

ture. 47–56.

[23] J. Kim, W. J. Dally, S. Scott, and D. Abts. 2008. Technology-driven, highly-scalable dragonfly topology. SIGARCH

Comput. Archit. News 36, 3 (June 2008), 77–88. DOI:https://doi.org/10.1109/ISCA.2008.19

[24] C. E. Leiserson. 1985. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans. Comput. 34,

10 (Oct. 1985), 892–901. http://dl.acm.org/citation.cfm?id=4492.4495.

[25] A. Martínez, F. J. Alfaro, J. L. Sánchez, F. J. Quiles, and J. Duato. 2007. A new cost-effective technique for QoS support

in clusters. IEEE Trans. Parallel Distrib. Syst. 18, 12 (2007), 1714–1726.

[26] T. Nachiondo, J. Flich, and J. Duato. 2010. Buffer management strategies to reduce HoL blocking. IEEE Trans. Parallel

Distrib. Syst. 21, 6 (June 2010), 739–753. DOI:https://doi.org/10.1109/TPDS.2009.63

[27] Ali Shafiee Naveen Muralimanohar and Vaishnav Srinivas. [n.d.]. CACTI v7.0—A Tool to Model Caches/Memories,

3D stacking, and off-chip IO. Retrieved from https://github.com/HewlettPackard/cacti.

[28] R. Peñaranda, C. Gómez Requena, M. E. Gómez, P. López, and J. Duato. 2016. The k-ary n-direct s-indirect family of

topologies for large-scale interconnection networks. J. Supercomput. 72, 3 (2016), 1035–1062. DOI:https://doi.org/10.

1007/s11227-016-1640-z

[29] J. Rocher-Gonzalez, J. Escudero-Sahuquillo, P. J. García, and F. J. Quiles. 2017. On the impact of routing algorithms in

the effectiveness of queuing schemes in high-performance interconnection networks. In Proceedings of the 25th IEEE

HOTI. 65–72. DOI:https://doi.org/10.1109/HOTI.2017.16

[30] T. Schneider, O. Bibartiu, and T. Hoefler. 2016. Ensuring deadlock-freedom in low-diameter infiniband networks.

In Hot Interconnects. IEEE Computer Society, 1–8. Retrieved from http://dblp.uni-trier.de/db/conf/hoti/hoti2016.

html#SchneiderBH16.

[31] Alexander Shpiner and Eitan Zahavi. 2016. Race cars vs. trailer trucks: Switch buffers sizing vs. latency trade-offs in

data center networks. In Proceedings of the 24th IEEE Symposium on High Performance Interconnects (HOTI’16). 53–59.

DOI:https://doi.org/10.1109/HOTI.2016.021

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

https://doi.org/10.1109/HPCA.2005.1
https://doi.org/10.1016/j.jpdc.2013.09.002
https://doi.org/10.1109/TPDS.2012.303
https://doi.org/10.1109/TPDS.2014.2307851
https://doi.org/10.1109/IPDPS.2010.5470419
https://doi.org/10.1109/CONECT.2005.14
https://doi.org/10.1109/ISCA.2008.19
http://dl.acm.org/citation.cfm?id=4492.4495
https://doi.org/10.1109/TPDS.2009.63
https://github.com/HewlettPackard/cacti
https://doi.org/10.1007/s11227-016-1640-z
https://doi.org/10.1007/s11227-016-1640-z
https://doi.org/10.1109/HOTI.2017.16
http://dblp.uni-trier.de/db/conf/hoti/hoti2016.html#SchneiderBH16
http://dblp.uni-trier.de/db/conf/hoti/hoti2016.html#SchneiderBH16
https://doi.org/10.1109/HOTI.2016.021

17:26 P. Yebenes et al.

[32] Y. Tamir and G. L. Frazier. 1992. Dynamically allocated multi-queue buffers for VLSI communication switches. IEEE

Trans. Comput. 41, 6 (June 1992), 725–737. DOI:https://doi.org/10.1109/12.144624

[33] P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia, and F. J. Quiles. 2013. Towards modeling interconnection networks of

exascale systems with OMNet++. In Proceedings of the 21st Euromicro International Conference on Parallel, Distributed

and Network-based Processing (PDP’13). 203–207. DOI:https://doi.org/10.1109/PDP.2013.36

[34] P. Yebenes Segura, J. Escudero-Sahuquillo, C. Gomez Requena, P. J. Garcia, F. J. Quiles, and J. Duato. 2013. BBQ: A

straightforward queuing scheme to reduce HoL-blocking in high-performance hybrid networks. In Proceedings of the

International Conference on Parallel and Distributed Computing (Euro-Par’13), Vol. 8097. 699–712.

[35] Eitan Zahavi, Greg Johnson, Darren J. Kerbyson, and Michael Lang. 2010. Optimized InfiniBand fat-tree routing for

shift all-to-all communication patterns. J. Concurr. Comput. Pract. Exper. 22, 2 (2010), 217–231.

Received June 2018; revised January 2019; accepted February 2019

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 17. Publication date: April 2019.

https://doi.org/10.1109/12.144624
https://doi.org/10.1109/PDP.2013.36

