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Abstract—Distributed deep learning systems place stringent
requirement on communication bandwidth in its model training
with large volumes of input data under user-time constraint. The
communications take place mainly between cluster of worker
nodes for training data and parameter servers for maintaining
a global trained model. For fast convergence the worker nodes
and parameter servers have to frequently exchange billions of
parameters to quickly broadcast updates and minimize staleness.
Demand on the bandwidth becomes even higher with the intro-
duction of dedicated GPUs in the computation. While RDMA-
capable network has a great potential to provide sufficiently high
bandwidth, its current use over TCP/IP or tied to particular
programming models, such as MPI, limits its capability to break
the bandwidth bottleneck.

In this work we propose iRDMA, an RDMA-based parameter
server architecture optimized for high-performance network
environment supporting both GPU- and CPU-based training. It
utilizes native asynchronous RDMA verbs to achieve network line
speed while minimizing the communication processing cost on
both worker and parameter-server sides. Furthermore, iRDMA
exposes the parameter server system as a POSIX-compatible file
API for convenient support of load balance and fault tolerance as
well as its easy use. We have implemented iRDMA at IBM’s deep
learning platform. Experiment results show that our design can
help deep learning applications, including image recognition and
language classification, to achieve near-linear improvement on
convergence speed and training accuracy acceleration by using
distributed computing resources. From the system perspective,
iRDMA can efficiently utilize about 95% network bandwidth of
fast networks to synchronize models among distributed training
processes.

Index Terms—RDMA; deep learning; network;

I. INTRODUCTION

Deep learning is reshaping the landscape of many traditional

machine learning fields, including image classification, lan-

guage processing, and machine translation. In pursuit of fast

training performance, researchers have resorted to massive-

parallel GPU devices to conduct deep neural network (DNN)

training on a single node over the past few years [7], [16],

[14], [4]. However, as the demand on better training services

continues to grow, seeking of high-performance deep learning

has led to the need of distributing the training workloads over

multiple GPUs on a cluster of nodes. A common practice in

such distributed GPU training is to rely on the assumption that

each subsets of input data are independently and identically

distributed (IID), and a centralized parameter server system

can be used to aggregate data about learning progress from

different learners.

In order to fully utilize the computing capability of all

the available streaming multiprocessors within a GPU device,

current deep learning frameworks usually use batch-based

processing to transform a group of input data, e.g., images,

into a large matrix, so that efficient matrix operations from

GPU libraries, such as cuBLAS and cuDNN [5], can be

applied to accelerate the forward and backward passes for

each individual datum. During the training, forward pass is

to assess the quality of the DNN model and back propagation

is to generate the gradients with respect to the current model

weights used by the neural network. For each batch processing,

gradients generated by different rounds of back propagation

are accumulated and normalized, and then used to refine

the model weights. A straightforward approach to leveraging

distributed GPUs for acceleration is to split each batch into

multiple mini-batches and assign different mini-batches to

different GPU learners for processing. Assuming there exists

a centralized parameter server to aggregate the gradients, at

the end of a mini-batch processing each learner uploads its

own gradients to the parameter server, which then normalizes

the gradients collected from all the learners and sends back

updated model weights.

However, as GPU devices become increasingly fast, network

bandwidth rises as a severe bottleneck keeping distributed deep

learning from achieving strong scalability. One approach to

alleviate the network bottleneck is to increase the mini-batch

size for lower communication frequency and longer compu-

tation time between batches. Unfortunately, such an approach

can compromise training quality with a reduced convergence

speed, as has been observed in previous studies [23], [12]. An

alternative method is to overlap communication overhead with

the computation time. However, without efficient system de-

sign the communication of data about a trained model between

the learners and parameter servers, or model exchanging, can

consistently lag behind the GPU computation, which leaves

the learners no choice but to use staled model weights in

its computation. Consequently, it may slow down the training

convergence.

To address the issues, many deep learning service vendors

recently pay great attention on high-performance networks,

such as 56/100 Gbps InfiniBand and Converged Ethernet,

to support efficient distributed GPU-based training. How-

ever, existing software solutions, such as the one used by

the GeePS [9], that rely on TCP/IP-based communication

mechanism are unable to fully exploit the benefits of the

fast networks. In addition, although several RDMA-enabled

MPI primitives, including AllReduce, can be employed to

implement the gradients aggregation, they require rigid syn-
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Fig. 1: Parameter server architecture.

chronization policies, which can lead to frequent GPU stalls.

Moreover, lack of fault tolerance support renders MPI-based

approach less attractive.

In this work, we aim to leverage Remote Direct Memory

Access (RDMA) to design a high-performance model ex-

changing protocol, named as iRDMA, between GPU-based

learners and parameter servers to accelerate distributed GPU-

based deep learning systems on both throughput and conver-

gence speed. More specifically, it takes advantage of the native

asynchronous RDMA verbs to achieve network line speed

for model exchanging while minimizing the communication

cost on both learner and parameter-server sides. It pipelines

the model transferring over the network with the gradient

aggregation on the servers by dividing the gigantic neural

network model into a large number of small blocks as working

units. Combining this data chunking with double buffering,

iRDMA can overlap the communication with both the training

on the learner side and the aggregation on the servers, and

evenly distribute the network traffic and aggregation workloads

among multiple parameter servers. Furthermore, such a design

can effectively reduce memory demand at the server side.

Built atop this protocol, we further introduce an adaptive

pulling algorithm that takes account of the computation and

communication timing to carry out the model pulling to

address model staleness issue.

There are several challenges in designing the RDMA-based

model exchanging solution. First, in order to achieve zero-copy

and hide communication overhead, it requires a holistic design

on the network protocol and asynchronous scheduling. Second,

as the default communication unit, which is the entire neural

network model, can contain hundreds of millions or even

billions of parameters, it is hard to determine how to perform

data chunking to overlap the communication and computation.

Lastly, deep learning frameworks are written in different lan-

guages, e.g., C++ in Caffe [14], Python in Theano [4], and Lua

in Torch [8]. It requires substantial engineering efforts to wrap

the backend communication system. In order to efficiently

implement iRDMA, this work has adopted a novel approach by

leveraging the well-optimized high-performance components

found in distributed storage systems, including the Linux SCSI

framework, to assemble a high-performance parameter server

system. It exposes a set of POSIX-compatible APIs to simplify

the integration with different deep learning frameworks.

II. RELATED WORK

The parameter-server-based approach is a primary method

to scale out deep learning tasks in a distributed environ-

ment. DistBelief [11], Project Adam [6], and the Parameter

Server [17] are three pioneering works on using parameter

server systems to facilitate large-scale CPU-based machine

learning and deep learning applications. The design of pa-

rameter server system commonly follows the architecture as

depicted in Figure 1, which consists of a group of learners,

each of which processes a part of the input training data. Peri-

odically, learners upload local gradients or weights generated

from previous training to a group of parameter servers, which

aggregate the gradients received from different learners and

update the global weights. The parameter servers then return

updated model weights back to the learners. While several

parallel algorithms [19], [22], [13], [24] have been proposed

over the past few years to accelerate the distributed training,

one of the major driving algorithms that enables such parallel

training is Parallel Stochastic Gradient Descent [11].

However, large-scale CPU-based training is challenged by

cost efficiency issue. Recent deep learning research [7], [9],

[16] has demonstrated that comparable accuracy and signif-

icantly reduced training time can be received with a small

number of commodity GPUs in a highly cost-efficient manner.

To efficiently utilize local GPUs for training deep neural

networks, many frameworks, including Caffe [14], Torch [8],

and Theano [4] have been introduced over the past few years.

However network bandwidth remains as a severe bottleneck

preventing these systems from leveraging distributed GPUs.

Currently, all the above three systems are still based on local

GPU. There are several attempts to scale out distributed GPU

training, including DeepSpeech [2] and GeePS [9]. However,

the former takes advantages of an HPC environment to battle

against the bandwidth issue while the later relaxes the batch

size limit at the cost of degrading the peak accuracy.

III. MOTIVATION

To understand the network bandwidth requirement on sus-

tained overlapping of the DNN training with model exchang-

ing between parameter servers and learners, we have examined

three neural network models, including Natural Language

Classification (NLC), VGG Convolutional Neural Network

(VGG), and AlexNet. Figure 2 illustrates the required network

bandwidth in a single direction to keep pace with different

computing devices. As shown in the figure, when neural

networks are trained on CPUs with OpenBLAS acceleration,

the pressure on the network is fairly moderate as the entire

training is constrained by the slow computation. However,

migrating the computation from CPU to GPU (NVIDIA K40

with 1.43 TFLOPs) shifts the bottleneck from the computation

devices to the the network bandwidth. In particular, a 10 Gbps

Ethernet can no longer offer sufficient bandwidth to allow

different learners to retrieve the latest models from the param-

eter servers after each mini-batch processing. To address this

issue, faster networks, such as 40/56 Gbps InfiniBand, become

necessary to mitigate the bandwidth bottleneck. However, such
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Fig. 2: Network throughput requirement for completely over-

lapping computation with communication for deep learning.

a solution is only temporary as faster GPU devices, such as

NVIDIA Titan X with 11 TFLOPs, have significantly reduced

the computation time, exposing the network bandwidth as a

growing concern. Also shown in the figure, the full network

bandwidth is generally needed when faster GPU device is

used to carry out the training. Although TCP-based transfer

can improve its performance, it requires many application and

system optimizations including multi-stream-based application

protocol design, receiving side steering, interrupt binding, and

enlarge MTU. It also has high protocol processing cost. For

example, a 10 Gbps networking saturates a CPU core on both

send and receive side, then a 56 Gbps one would consume

more then five cores on each side. This compromises CPU-

based training due to contention on CPU cores and memory

bandwidth [18], [20]. Therefore, TCP-based solution is not

optimal in a fast network environment at 56 Gbps, 100 Gbps, or

even higher, and it becomes inevitable to explore efficient use

of RDMA networks for communication-intensive workloads

such as distributed deep learning.

IV. DESIGN AND IMPLEMENTATION

iRDMA aims to provide a low overhead and high bandwidth

data path between parameter server and a (large) number of

parallel training nodes (as well as jobs running on them)

for synchronizing training updates. To maximize computation

resource utilization, we introduce a zero-stall design by using

a double-buffer mechanism. Meanwhile, iRDMA introduces

an adaptive pulling mechanism to minimize staleness between

workers on the training nodes and the global model on the

parameter server. From the system performance perspective,

iRDMA utilizes a block based data transfer method, in which a

large model is split into small pieces to maximize transmission

throughput and reduce memory demand at the parameter

server. iRDMA also provides a POSIX-compatible program-

ming API to ease the integration efforts as well as reduce the

complexity on model sharding and fault tolerance.

A. Optimized RDMA data path for distributed deep learning

RDMA and its supporting network layer, such as InfiniBand

and RoCE (RDMA over Converged Ethernet), are becom-

ing a dominant cross-node data exchanging path to support

communication-intensive workloads for their high bandwidth

at 40/56/100 Gbps and low latency at single-digit microsec-

ond scale. However, it often demands to take consideration

of workloads characteristics for a co-design of application

network protocol and user-space memory management to

fully exploit advanced RDMA performance advantage. The

distributed deep learning workloads generate high frequent

requests of data into and out of parameter server periodically.

The I/O size mostly is in the megabyte to gigabyte scale,

and I/O throughput is the key performance metric. Therefore,

how to fully utilize the available network bandwidth becomes

critical in achieving high performance.

RDMA offers a set of of design choices for a variety

of workloads with different characteristics. There are two

message transfer semantics: one-sided and two-sided channel

semantics. Because deep learning workload transfers large

messages, the two-sided channel has a higher memory demand

on the parameter server side. In contrast, one-sided operations,

including RDMA write and RDMA read, are optimized for

throughput-oriented workloads. They bypass the receiving side

notification stack, thus demand an out-of-band notification

mechanism. The one-sided operations can share a memory

pool and dynamically allocate different memory region accord-

ingly. Accordingly, iRDMA uses one-sided RDMA operations

to achieve high throughput.

To further improve the throughput of aggregation functions,

iRDMA maintains model data inside the memory of the GPU

device on the parameter server, and transfers gradients into

and weights out of GPU memory directly by using GPUDirect

RDMA technology. For the write() operation, the latency

consists of network transmission and model aggregation. The

GPUDirect RDMA has similar network transmission perfor-

mance as regular main memory based RDMA operations,

while the massive GPU parallelism decreases the aggregation

time. On serving a read() operation, however, GPUDirect

RDMA incurs the PCIe host interface overhead on in-flight

transactions from a GPU device. As a result, the I/O requests

can only achieve half of the network peak throughput, and

the latency for retrieving model from GPU’s memory is 2×
higher than that from server’s main memory. This offsets the

benefit iRDMA obtains from the write() operation. To address

the issue, iRDMA creates a dedicated GPU stream to move

updated weights to the main memory. The read() request

would retrieve updated weights from the host memory, as

shown in Figure 4a. While the upcoming PCIe peer-to-peer

engine is expected to improve read() throughput, iRDMA

would leverage the GPUDirect RDMA to provide even lower

end-to-end latency to the workers.

B. Model buffer switching and adaptive pulling

A training iteration takes a small batch of training sample to

compute the gradients according to the neural network model
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definition and current model weights. In a distributed envi-

ronment, each worker contributes the gradients to the global

weights, and requests for the most updated weights to start

the next iteration. Synchronized communication may stall the

GPU and CPU computation during the communication phase.

Meanwhile, the network becomes idle during computation

phase, as shown in Figure 3(a).

Asynchronous communication scheme overlaps the training

and the communication phases to improve resource utilization.

There are two issues. First, the gradients copy-out and weights

copy-in between model memory and GPU communication

buffer take notable time, especially with large models of

hundreds of megabytes or even several gigabytes. Second, the

prefetched data is often of a version copy of the global weights

right after the gradient is sent to the parameter server. There

is a staleness time window on the worker side after the global

weight is downloaded and before the next iteration starts.

We propose a buffer switching mechanism to address the

first issue. iRDMA separates the model data from model

definition (metadata) by allocating two buffers for holding the

model data. At the beginning of an iteration, the worker uses

one of of model data buffers (a weights buffer and a gradients

buffer) to store and access its model definition, as shown in

Figure 4a. After the computation completes, the worker sends

a notification to the backend communication thread to switch

the buffer for the model definition to the other model buffer.

During the gradients computation, the backend communication

thread sends the last iteration’s gradient contribution, and pulls

the latest weights back. This avoids intermediate data copy

between the computation thread and communication thread,

thus enables near-optimal computation resource utilization.

In an optimal case, data pulling and computation finish

at the same time in each iteration. On the next iteration,

the worker can use the most updated weights with minimum

staleness. To address the second issue, we design an adaptive

pulling mechanism to pull the global weights. The communi-

cation thread collects a number of recent computation interval

time periods and model-downloading latencies to calculate

their moving averages for predicting the completion time of

current iteration, and then inserts a sleep time, named bubble,

adaptively, as depicted in Figure 3(c). In some rare cases, the

computation time is shorter than the latency of writing-out

gradients and read-in weights. The worker uses two threads to

overlap the bidirectional data transfer, as shown in Figure 3(d).

C. Block-based communication design and optimization

The model updates (gradients) and the model data (weights)

are the transfer entities between the workers and the parameter

server in each iteration. Their sizes are often in the range

of a few megabytes to a few gigabytes containing millions

to billions of floating point numbers. Traditionally, the whole

entities are transferred in an all-in-one-piece manner to sim-

plify the design and implementation of memory management

and RDMA-based application communication protocol. For

example, allocating a specified memory area for each worker

avoids dynamic memory management, and the parameter

server aggregates the updates only after the whole model

entity arrives. However, it incurs high memory demand as

the parameter server needs to allocate a memory buffer as

large as the product of model size and number of workers for

each training job. This would consume tens of gigabytes main

memory. Also, there is only one request that can be merged

at a given time since the merging cannot be performed in

parallel. As a result, some of the workers may expect stall on

the communication.

To achieve the bare-metal bandwidth of RDMA networks,

iRDMA uses a block-based communication mechanism. It

divides the weights and gradients entities into sub-megabyte

blocks, each of which is associated with a unique block

ID. The parameter server maintains the global model status

in blocks while the workers send gradients and request for

updated weights with block IDs. iRDMA creates a group

of threads to service concurrent requests in parallel. The

aggregation latency on each block can be reduced due to

much reduced data volume in each transfer (compared to the

whole model aggregation method). In the meantime, the I/O

parallelism is increased among different workers. Furthermore,

to transfer the same amount of data, RDMA network interfaces

(RNIC) can achieve better throughput with a set of I/O requests

in the kilobyte range rather than with one request requiring a

large memory buffer [21].

Because block-based communication between workers and

the parameter server has similar I/O data path as existing net-

work block storage systems, we build iRDMA by leveraging

the Linux SCSI target framework, tgt, which supports both
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TCP/IP and RDMA networks [10]. Existing storage servers

keep the contents in persistent storage media, and usually

map a virtual storage address, logical block address, in the

I/O request to a physical storage address. In the scenario of

communication in the deep learning platform, each I/O block

represents a part of the global model data, and workers send

write requests to the parameter server. The parameter server

needs to merge the gradients into corresponding weights range.

We implement an aggregation function for each of the I/O

blocks, and register it as a callback function on serving the

write requests. The global model data is maintained in the

main memory of parameter server for fast aggregation and

model retrieving.

D. Scalability, fault-tolerance, and interoperability

Scalability. To serve large-scale training jobs employing

ten or even hundreds of GPUs or CPUs, the parameter server

needs to scale out by utilizing computation (for aggregation)

and networking (for I/O) resources located on different ma-

chines. iRDMA splits the global model data into partitions, and

each partition is served by a parameter server shard processing

block-based requests. Each of the worker nodes initiates the

parameter server shards as a group of block devices. So the

workloads can be evenly distributed to the backend parameter

server shards. Meanwhile, the address translation and model

data partition are hidden to the user and developer, and can

be done through configuration to simplify client library design

and implementation.

Fault tolerance. iRDMA can tolerate both learner failure

and parameter server failure. When a worker dies unexpect-

edly, iRDMA continues to aggregate gradients pushed from

remaining learners. The learners then repartition the training

data and keep refining the training model. Only when the

number of dead workers reaches a threshold does iRDMA

terminate the training job.

Interoperability. To enable distributed training, the deep

learning community often either use distributed networking

programming and integration or adopt distributed program-

ming models and libraries such as MPI. This requires sub-

stantial integration efforts from the deep learning experts,

and different frameworks written in different programming

languages require an additional wrapper to interoperate with

the parameter server. To tackle the problem, iRDMA abstracts

the distributed global training model as a block device such

that the workers can access it directly through POSIX file

I/O APIs, i.e. write and read. The communication channel

setup and address space mapping can be performed through

configuration instead of programming. Because most of the

programming language has built-in file I/O library, those

frameworks can operate on iRDMA directly. This significantly

reduces the development effort.

V. EVALUATION

We have evaluated iRDMA extensively with both micro-

benchmarks and real-world workloads. Below we will present

performance results of iRDMA in different network environ-

ments in comparison with TCP alternatives. We will also

examine the end-to-end acceleration by enabling distributed

training in natural language classifications and large-scale

image recognition applications.

A. Experimental setup
Our testbed consists of three servers with GPU and RDMA

supports. Each server is equipped with two NVIDIA Tesla

K40m GPUs. All of the nodes are connected through both

10 Gbps Ethernet and Mellanox 56 Gbps FDR InfiniBand. To

enable GPUDirect RDMA, we installed the Mellanox peer-

to-peer driver for NVIDIA GPUs. We set up two of the

server as the worker nodes and the third one as the parameter

server. The aggregated computation power of four GPUs for

training reaches 5.6 TFLOPs. The InfiniBand bandwidth is

limited by PCI express 8-lane throughput and InfiniBand

header overhead, and in theory the peak payload throughput

can reach 50 Gbps.

B. Microbenchmark
During training, the parameter server process performs com-

munication and aggregation. The most critical performance

metric for iRDMA is the aggregated processing throughput

under massive concurrent read and write requests from worker

nodes. We perform a set of experiments with micro-benchmark

to evaluate iRDMA server performance.
We have developed a micro-benchmark derived from fio [3],

a popular file I/O stress tool. As described in section III,

iRDMA provides a block device abstraction to the worker

nodes, and the worker processes can write gradients and

read updated weights through the network block device. So

the microbenchmark generates the same amount of data as

that of the neural network models to simulate the gradients

generated by learners, and writes them to the parameter server.

iRDMA then performs aggregation function upon receiving the

gradients, and returns the aggregated weights to the clients per

read request.
The block device I/O can be performed in either a syn-

chronous way, i.e. read/write or an asynchronous way

with Linux libaio (named as AIO in the below). The AIO

can split a relatively large I/O request into many smaller I/O

requests and send the requests in parallel to I/O device. As a

result, AIO can queue a list of I/O requests to the I/O device

to achieve higher performance. In the iRDMA context, the

AIO can also be used to split the gradients buffer into smaller

pieces and send them in parallel.
We have measured throughput of parameter server by de-

ploying iRDMA using TCP, RDMA, or GPUDirect RDMA

as the transmission methods. Figure 5 shows the training

throughput under different I/O patterns, in which gradients and

updated weights are partitioned into data chunks of different

I/O sizes and transferred between learners and servers via

either synchronous or asynchronous methods.
In the evaluation we have a number of interesting observa-

tions. First, the RDMA-based solution outperforms the TCP-

based solution in all of the test cases, and the TCP data path
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Fig. 5: System throughput with synchronous and asynchronous reads and writes.

cannot scale up with high-performance networks. In particular,

the 56 Gbps-TCP setup requires a software network header

translation service, IP over IB (IPoIB), which significantly

limits the TCP bandwidth in the fat link and often bounded

by a CPU processing capability. Second, asynchronous I/O

performs better than synchronous I/O. Because there is at

most one I/O request in flight in the synchronous I/O, network

delay cannot be overlapped with batched requests. As a result,

synchronous I/O can only utilize about 80% of the available

network bandwidth. In contrast, AIO can achieve more than

95% network bandwidth with the block size in the range

from 256 KB to 4 MB, which is a sweet spot for iRDMA.

Smaller requests may incur excessive control event-processing

cost while larger requests incur NIC context control overhead.

Third, GPUDirect RDMA achieves comparable performance

for write operations, but only achieves about 50% network uti-

lization for read requests. For example, the 256KB AIO write

with GPUDirect RDMA achieves the best write performance,

while the 256KB AIO read with GPUDirect only receives less

than half of the available bandwidth. Therefore, iRDMA uses

GPUDirect RDMA to serve write requests and regular RDMA

for read requests.

The reason why the end-to-end GPUDirect RDMA cannot

efficiently saturate the network bandwidth and performs much

worse than RDMA protocol is that PCIe controller restricts

the number of transactions from GPU to other PCIe-connected

devices. As a result, RDMA-based NICs can only utilize half

of the PCIe peak bandwidth for moving data out of GPU

memory directly.

Fig. 6: Language classification accuracy over time.

C. Real-world workloads

In this section, we further evaluate iRDMA with real-

world deep learning workloads using natural language clas-

sification and image recognition. We show the performance

improvements achieved by our design in three metrics, namely

convergence speed, accuracy, and number of images processed

per second.

1) Natural language classification: Natural language clas-

sification represents a class of text classification workloads.

Our training sample includes 2,400 sentences split into 311

categories. Normally, its training samples are not in a big

search space. Therefore, the training converges relatively fast

with a few iterations. We use two GPUs on different servers

to train the model in parallel and exchange updates using

iRDMA. Figure 6 shows the accuracy improvement with

respect to time. iRDMA provides a higher converge speed by

fully overlapping communication with computation, and two
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Fig. 7: Cifar-10 training accuracy

Fig. 8: Cifar-10 test accuracy
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GPUs can train 2× training samples than a single GPU with

the same amount of time.

2) Cifar-10 image recognition: The Cifar-10 data set con-

sists of 60,000 32x32 color images labeled in 10 mutually

exclusive classes [15]. The data set is split into 50,000 training

images and 10,000 test images. We have integrated Torch

with iRDMA to enable distributed training, and used a Torch-

based application [1] to train a model to classify images. We

chose VGG (Visual Geometry Group) neural network model

consisting of 1.5 million model parameters.

We measured the training performance in terms of con-

vergence speed and quantified training progress based on the

training and test accuracy achieved over time. Figures 7 and 8

show the training accuracy and test accuracy improvement,

respectively, over the training time. We run local GPU training

without communication overhead, shown as 1 GPU in the

figures, and scale out the training with iRDMA by using

two and four GPUs across two worker servers. The two

worker servers communicate updates by using the iRDMA

over RDMA, shown as 2 GPUs and 4 GPUs.

As shown in the figures, the distributed GPU training

using iRDMA delivers a higher convergence speed compared

to single GPU training. For example, to get 90% training

accuracy, a single GPU spends 5.3 hours, while it takes 2.5

and 1.3 hours for 2 GPUs and 4 GPUs, respectively, to

achieve the same accuracy. This suggests strong scalability

on training performance. Second, multiple GPUs are able to

train more samples in the same amount of time compared to a

single GPU, demonstrating that iRDMA is able to aggregate

the updates from multiple learners and broadcast the weights

efficiently. Figure 9 shows the training throughput in terms

of trained images per second. iRDMA achieves near-linear

training scalability with the double buffering design and effi-

cient RDMA communication, while TCP-based solution incurs

notable communication overhead and cannot overlap commu-

nication with computation. In addition, Figure 10 shows the

iRDMA’s average bandwidth on serving read and write re-

quests. Because serving write operations includes aggregation

time as well as communication time, the overall bandwidth on

serving write requests is smaller than that for read requests.

The read operations can achieve 95% network utilization on

average.

VI. CONCLUSION

Network bandwidth is rising as a major bottleneck keeping

GPU-based deep learning from scaling out. To address this

issue, we introduce iRDMA, an RDMA-accelerated parameter

server system to allow existing deep learning frameworks to

exploit the full bandwidth of fast networks. By optimizing

the model exchange channels through combining the native

asynchronous RDMA verbs with efficient model partitioning

and using double-buffer mechanism, iRDMA delivers near-

line-rate model exchanging rate with minimal stalls on GPU

computation due to fully overlapped computation and commu-

nication. In addition, adaptive pulling mechanism effectively

reduces the model staleness and increases the learning ef-

ficiency of all the learners. Moreover, iRDMA is designed

via a novel usage of conventional network storage system

and exposes POSIX-compatible API to access shared global

model, which effectively reduces the engineering efforts to

support load balance and fault tolerance, and simplifies the

integration with existing deep learning frameworks.
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